Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.
Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a wellreconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the C. elegans connectome, incorporating presynaptic neurotransmitter and postsynaptic receptor gene expression data (3,638 connections and 20,589 synapses total). We made successful predictions for more than two-thirds of all chemical synapses and determined a ratio of excitatory-inhibitory (E:I) interneuronal ionotropic chemical connections close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu)is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data. Author SummaryThe fundamental way neurons communicate is by activating or inhibiting each other via synapses. The balance between the two is crucial for the optimal functioning of a nervous system. However, whole-brain synaptic polarity information is unavailable for any species and experimental validation is challenging. The roundworm Caenorhabditis elegans possesses a fully mapped connectome with a comprehensive gene expression profile of its 302 neurons.Based on the consideration that the polarity of a synapse must be determined by the neurotransmitter(s) expressed in the presynaptic neuron and the receptors expressed in the postsynaptic neuron, we conceptualized and created a tool that predicts synaptic polarities based on connectivity and gene expression information. We were able to show for the first time that the ratio of excitatory and inhibitory synapses in C. elegans is around 4 to 1 which is 3 in line with the balance observed in many natural systems. Our method opens a way to include spatial and temporal dynamics of synaptic polarity that would add a new dimension of plasticity in the excitatory:inhibitory balance. Our tool is freely available to be used on any network accompanied by any expression atlas.
Objectives Our goal was to apply statistical and network science techniques to depict how the clinical pathways of patients can be used to characterize the practices of care providers. Methods We included the data of 506,087 patients who underwent procedures related to ischemic heart disease. Patients were assigned to one of the 136 primary health-care centers using a voting scheme based on their residence. The clinical pathways were classified, and the spectrum of the pathway types was computed for each center, then a network was built with the centers as nodes and spectrum correlations as edge weights. Then Louvain clustering was used to group centers with similar pathway spectra. Results We identified 3 clusters with rather distinct characteristics that occupy quite compact spatial areas, though no geographical information was used in clustering. Network analysis and hierarchical clustering show the dominance of medical university clinics in each cluster. Conclusion Though clinical guidelines provide a uniform regulation for medical decisions, doctors have great freedom in daily clinical practice. This freedom leads to regional preferences of certain clinical pathways, the intercenter professional links, and geographical locality and coupled with quantifiable consequences in terms of care costs and periprocedural risk of patients.
Regulation of translocating proteins is crucial in defining cellular behaviour. Epithelial-mesenchymal transition (EMT) is important in cellular processes, such as cancer progression. Several orchestrators of EMT, such as key transcription factors, are known to translocate. We show that translocating proteins become enriched in EMT-signalling. To simulate the compartment-specific functions of translocating proteins we created a compartmentalized Boolean network model. This model successfully reproduced known biological traits of EMT and as a novel feature it also captured organelle-specific functions of proteins. Our results predicted that glycogen synthase kinase-3 beta (GSK3B) compartment-specifically alters the fate of EMT, amongst others the activation of nuclear GSK3B halts transforming growth factor beta-1 (TGFB) induced EMT. Moreover, our results recapitulated that the nuclear activation of glioma associated oncogene transcription factors (GLI) is needed to achieve a complete EMT. Compartmentalized network models will be useful to uncover novel control mechanisms of biological processes. Our algorithmic procedures can be automatically rerun on the https://translocaboole.linkgroup.hu website, which provides a framework for similar future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.