We studied the inhibitory effects on colony formation by granulocyte-macrophage colony forming units (cfu-gm) of eight azole antifungal agents in vitro. All agents, except fluconazole, inhibited colony formation dose-dependently with 50% inhibitory concentrations (IC50) in the range of 0.78-49 micromol/L in cultures of murine and human bone marrow. For human cells, the IC50 values were 0.553 mg/L for itraconazole, 1.24 mg/L for saperconazole, 2.58 mg/L for clotrimazole, 5.33 mg/L for miconazole, 6.17 mg/L for econazole, 6.27 mg/L for ketoconazole and 8.38 mg/L for oxiconazole. The IC50 of itraconazole for human cfu-gm in vitro was similar to the plasma level of this drug recommended for systemic antifungal therapy (>0.5 mg/L) thus indicating the potential clinical relevance of our data. The IC50 of ketoconazole for human cfu-gm in vitro may be exceeded by plasma levels produced in vivo by high (> or =400 mg) doses, whereas fluconazole failed to reduce colony formation by 50% even at 100 mg/L, a concentration not reached in vivo even after extremely high doses (2000 mg/day). To most of the drugs studied, murine progenitor cells seemed to be less sensitive than the human ones. There was, however, a close correlation between the murine and human log IC50 values of the drugs (r2 = 0.964, P< 0.001), suggesting that cultures of murine bone marrow may be suitable to predict the in-vitro toxicity of azole antifungals to human cfu-gm.
Esters of the centrally acting oxazepam were investigated to find quantitative correlations between the pharmacokinetics of the parent drug and in vitro biotransformation rates and physicochemical properties of its prodrugs. The 14C-labeled aliphatic and omega-phenyl-substituted esters were administered intravenously to mice. Brain levels of the esters and oxazepam were determined and the latter was fitted to a simplified exponential equation. In vitro hydrolysis rate of the esters catalyzed by the hepatic microsomal fraction was measured with a pH stat. Pharmacokinetic constants characterizing the rising part of oxazepam brain levels correlate well with the chromatographic RM values and with in vitro maximal hydrolysis rates of the esters. The hydrolysis is capacity limited in the liver. In a closely related set of aliphatic esters, oxazepam brain penetration also correlates with the steric constant (ES) of its esters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.