Sixteen groups of mice were fed diets containing different selenium species to compare their toxicity. Inorganic sodium selenate and sodium hydroselenite, elementary nanoSe, organic Sel-Plex, and Lacto-MicroSelenium were administered for 14 d at concentrations of 0.5, 5, and 50 ppm Se, equivalent to 0.5, 5, and 50 mg Se/kg food, corresponding to an estimated 4, 40, and 400 µg/kg body weight/d Se uptake, respectively. At the end of the treatment, body, liver, spleen, kidney, heart, and brain weights were measured, mice were subjected to necropsy, and histological examinations were performed on the liver. At lower Se doses (0.5 and 5 ppm) a moderate reduction was observed in the number of bone marrow and white blood cells and in granulocyte-macrophage colony-forming units (GM-CFUs) relative to the untreated control group of mice. A comparison of lowest toxic doses of sodium selenite in mice (0.5 ppm) and mallard (10 ppm) indicates that birds are more resistant to Se than rodents. In mice, a small but measurable weight loss was observed after 5 ppm selenate and LactoMicroSe treatment. The most significant changes took place after 50-ppm administration in body and spleen weight, hematology, and liver histology. Toxicity was more pronounced when inorganic Se was applied than after subacute application of Sel-Plex, nanoSe, or LactoMicroSe. To summarize the effects, the authors' 14-d murine subacute toxicity study showed that the toxicity of Se species decreased in the following order: selenate > selenite > nanoSe > Sel-Plex > LactoMicroSe.
In 1986, we started the research on spleen surgery aimed at saving the splenic mass after its traumatic injury, with elaboration of special resection and autotransplantation techniques. The researches started on mongrel dogs and were continued on inbred mice and beagle dogs with complex histological, imaging, and laboratory investigations, following-up the function and the regeneration of autotransplanted spleen chips. Performing research on mice provided more immunological methods, such as lymphocyte subsets, immunoglobulin levels, and monitoring the phagocytic functions. Researches showed evidence also on the presence of apoptosis, furthermore, stem cell studies on regeneration and functional restoration of the spleen chips are in progress. Our results contributed to two multidisciplinary guidelines in Hungary: (1) One of them is under preparation and underlines the importance of spleen saving methods after traumatic splenic injury; (2) The second guideline shows that hemorheological changes can be early indicators of the increased sensitivity to postsplenectomy infections.
BackgroundAs an essential trace element selenium plays a significant role in many physiological functions of the organs. It is found within muscles as selenocystein in selenoprotein N, which is involved in redox-modulated calcium homeostasis and in protection against oxidative stress.MethodsThe effects of two different selenium compounds (selenate and NanoSe in 0.5 and 5 ppm concentration for two weeks) on muscle properties of mice were examined by measuring in vivo muscle performance, in vitro force in soleus (SOL) and extensor digitorum longus (EDL) muscles and changes in intracellular Ca2+ concentration in single fibers from flexor digitorum brevis (FDB) muscle.. Western-blot analysis on muscle lysates of EDL and SOL were used to measure the selenoprotein N expression. Control mice received 0.3 ppm Se.ResultsWhile the grip force did not change, 5 ppm selenium diets significantly increased the speed of voluntary running and the daily distance covered. Both forms of selenium increased significantly the amplitude of single twitches in EDL and SOL muscle in a concentration dependent manner. Selenate increased fatigue resistance in SOL. The amplitude of the calcium transients evoked by KCl depolarization increased significantly from the control of 343 ± 44 nM to 671 ± 51 nM in the presence of 0.5 ppm selenate in FDB fibers. In parallel, the rate of calcium release during short depolarizations increased significantly from 28.4 ± 2.2 to 45.5 ± 3.8 and 52.1 ± 1.9 μM/ms in the presence of 0.5 ppm NanoSe and selenate, respectively. In 0.5 ppm concentration both selenium compounds increased significantly the selenoprotein N expression only in EDL muscle.ConclusionsSelenium supplementation augments calcium release from the sarcoplasmic reticulum thus improves skeletal muscle performance. These effects are accompanied by the increased selenoprotein N expression in the muscles which could result in increased oxidative stress tolerance in case of long lasting contraction.Electronic supplementary materialThe online version of this article (doi:10.1186/s12986-016-0134-6) contains supplementary material, which is available to authorized users.
We studied the inhibitory effects on colony formation by granulocyte-macrophage colony forming units (cfu-gm) of eight azole antifungal agents in vitro. All agents, except fluconazole, inhibited colony formation dose-dependently with 50% inhibitory concentrations (IC50) in the range of 0.78-49 micromol/L in cultures of murine and human bone marrow. For human cells, the IC50 values were 0.553 mg/L for itraconazole, 1.24 mg/L for saperconazole, 2.58 mg/L for clotrimazole, 5.33 mg/L for miconazole, 6.17 mg/L for econazole, 6.27 mg/L for ketoconazole and 8.38 mg/L for oxiconazole. The IC50 of itraconazole for human cfu-gm in vitro was similar to the plasma level of this drug recommended for systemic antifungal therapy (>0.5 mg/L) thus indicating the potential clinical relevance of our data. The IC50 of ketoconazole for human cfu-gm in vitro may be exceeded by plasma levels produced in vivo by high (> or =400 mg) doses, whereas fluconazole failed to reduce colony formation by 50% even at 100 mg/L, a concentration not reached in vivo even after extremely high doses (2000 mg/day). To most of the drugs studied, murine progenitor cells seemed to be less sensitive than the human ones. There was, however, a close correlation between the murine and human log IC50 values of the drugs (r2 = 0.964, P< 0.001), suggesting that cultures of murine bone marrow may be suitable to predict the in-vitro toxicity of azole antifungals to human cfu-gm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.