With the rapid development of tunnel construction, more and more long tunnels are being designed and built. In contrast to ordinary tunnels, long tunnels are characterized by large construction distances and difficult ventilation. In this study, gallery ventilation systems in the construction of long tunnels were studied. Combined with the CFD software FLUENT, a three-dimensional model of tunnel ventilation of a double tunnel was established, and a numerical simulation analysis of the ventilation flow field was carried out and optimized the flow field of gallery ventilation. We found that the main circulation air flow of gallery ventilation was formed by the jet fan, which was installed near the air flow-in tunnel. We also determined the main factors that affect the ventilation effect in gallery ventilation, including the wind wall formed by the high-speed airflow at the cross-aisle and found that the draft fan in front of the cross-aisle could eliminate the wind wall and improve the ventilation effect. The influence of the location and type of the draft fan on the elimination of air flow structure was studied, and the best fan layout scheme suitable for the site was determined. The ventilation scheme of the tunnel was optimized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.