In this paper experiments have been conducted to investigate the flow boiling and heat transfer characteristics in microchannels with three different surface wettability. Three types of microchannels with a super-hydrophilic surface (θ ≈ 0°), a hydrophilic surface (θ = 43°) and an untreated surface (θ = 70°) were prepared. The results show that the average heat transfer coefficient of a super-hydrophilic surface microchannel is significantly higher than that of an untreated surface microchannel, especially when the mass flux is high. The visualization of the flow patterns states that the number of bubble nucleation generated in the super-hydrophilic microchannel at the beginning of the flow boiling is significantly more than that in the untreated microchannel. Through detailed analysis of the experimental data, flow patterns and microchannel surface SEM images, it can be inferred that the super-hydrophilic surface microchannel has more active nucleation cavities, a high nucleation rate and a large nucleation number, a small bubble departure diameter and a fast departure frequency, thereby promoting the flow and heat transfer in the microchannel. In addition, through the force analysis of the vapor-liquid interface, the mechanism that the super-hydrophilic microchannel without dryout under high heat flux conditions is clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.