Nonimprinted and Fe 3þ imprinted chitosan tripolyphosphate gel beads were prepared via physical gel formation. A method based on in situ crosslinking using ethylene glycol diglycidyl ether was developed to imprint the chitosan tripolyphosphate gels with Fe 3þ ion without deteriorating the gel beads. The beads were characterized by FTIR, SEM, XRD, and DSC with respect to the chemical structure, surface morphology, crystallinity, and thermal behavior. Swelling kinetics and Fe 3þ ion adsorption behavior from aqueous solution were studied. The Fe 3þ imprinted and in situ crosslinked beads proved to be durable and effective adsorbents for Fe 3þ in solution. The bead prepared by in situ crosslinking and in the presence of 10 mM template ion had an equilibrium iron adsorption capacity of 53.9 mg/ g after 3-hour contact with 5 mM Fe 3þ solution. The pros and cons of the beads as biomedical iron adsorbents were tested by evaluating their serum iron removal capacities from human blood. The preliminary tests carried out showed that Fe 3þ imprinted beads were more effective in decreasing serum iron in human blood when compared to the nonimprinted beads. The decrease in serum iron level accompanied a parallel decrease in the hemoglobin level. The calcium level was also affected upon contact with the beads. The Fe 3þ imprinted beads were less effective than the nonimprinted ones in decreasing the calcium level indicating selectivity towards iron containing species.
Ascorbyl chitosan was synthesized by heating chitosan with ascorbic acid in isopropanol. The products were characterized by FTIR and C-13 NMR spectroscopies, SEM, and elemental analysis. Blood contact properties of ascorbyl chitosans were evaluated. The ascorbyl chitosans demonstrated to have increased lipid-lowering activity in comparison to chitosan alone upon contact with human blood serum in in vitro conditions. Furthermore, the total cholesterol/HDL ratio was improved towards the desirable ideal values after three hours contact with ascorbyl chitosan samples. The lipid-lowering activity increased with ascorbyl substitution. The inherent nonspecific adsorption capability of chitosan due to its chelating power with several different functional groups was exhibited by ascorbyl chitosans as well. This behavior was exemplified in a simultaneous decrease in the total iron values of the volunteers together with lower lipid levels. Furthermore, ascorbyl chitosans were observed to have less hemocompatibility but increased anticoagulant activity when compared to chitosan alone. Additional in vivo studies are necessary to support these results and to investigate further the advantages and disadvantages of these materials to prove their safety prior to clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.