Water is essential for all living organisms. Aquaporin proteins are the major facilitator of water transport activity through cell membranes of plants including soybean. These proteins are diverse in plants and belong to a large major intrinsic (MIP) protein family. In higher plants, MIPs are classified into five subfamilies including plasma membrane intrinsic proteins (PIP), tonoplast intrinsic proteins (TIP), NOD26-like intrinsic proteins (NIP), small basic intrinsic proteins (SIP), and the recently discovered X intrinsic proteins (XIP). This paper reports genome wide assembly of soybean MIPs, their functional prediction and expression analysis. Using a bioinformatic homology search, 66 GmMIPs were identified in the soybean genome. Phylogenetic analysis of amino acid sequences of GmMIPs divided the large and highly similar multi-gene family into 5 subfamilies: GmPIPs, GmTIPs, GmNIPs, GmSIPs and GmXIPs. GmPIPs consisted of 22 genes and GmTIPs 23, which showed high sequence similarity within subfamilies. GmNIPs contained 13 and GmSIPs 6 members which were diverse. In addition, we also identified a two member GmXIP, a distinct 5th subfamily. GmMIPs were further classified into twelve subgroups based on substrate selectivity filter analysis. Expression analyses were performed for a selected set of GmMIPs using semi-quantitative reverse transcription (semi-RT-qPCR) and qPCR. Our results suggested that many GmMIPs have high sequence similarity but diverse roles as evidenced by analysis of sequences and their expression. It can be speculated that GmMIPs contains true aquaporins, glyceroporins, aquaglyceroporins and mixed transport facilitators.
Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na + and K + , and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement.Plants encounter various biotic and abiotic stressors during their life cycle. Growth and development is delayed when plants are exposed to extreme environmental conditions, such as high salt, drought, cold, and heat. Soil salinity affects large areas of cultivated land, which are naturally present in more than 100 countries worldwide 1 . The increasing and continued salinization of cultivated land threatens global crop production, especially in irrigated systems 2 and has negative impacts on food security. The consequences are damaging in both socioeconomic and environmental terms. Increasing the salinity tolerance of crop plants may be an important contribution to the maintenance and stability of crop yields in salt-affected soils.Plants can adapt to these adverse environmental conditions by regulating the expression of a large number of genes related to abiotic stress. A number of genes, including effector and regulatory genes, are reportedly involved in the alteration of their expression in response to stressors such as salinity [3][4][5][6] . Plants may adapt to these adverse environmental conditions by regulating of the expressions of a large number of abiotic stress-related genes. Stress-related genes are categorized into the following two major groups: genes that encode structural proteins and regulatory proteins, including transcription factors (TFs), and genes encoding signal-related protein kinases 7,8 . Stress-related TFs play important roles in the regulation of stress responses, such as in salt and drought tolerance. A single TF is sufficient to control the expr...
BackgroundRice is a drought susceptible crop. A symbiotic association between rice and mycorrhizal fungi could effectively protect the plant against sudden or frequent episodes of drought. Due to its extensive network of hyphae, the endophyte is able to deeply explore the soil and transfer water and minerals to the plant, some of them playing an important role in mitigating the effects of drought stress. Moreover, the endophyte could modify the expression of drought responsive genes and regulate antioxidants.ResultsThree rice genotypes, WC-297 (drought tolerant), Caawa (moderately drought tolerant) and IR-64 (drought susceptible) were inoculated with Piriformospora indica (P. indica), a dynamic endophyte. After 20 days of co-cultivation with the fungus, rice seedlings were subjected to 15% polyethylene glycol-6000 induced osmotic stress. P. indica improved the growth of rice seedlings. It alleviated the destructive effects of the applied osmotic stress. This symbiotic association increased seedling biomass, the uptake of phosphorus and zinc, which are functional elements for rice growth under drought stress. It boosted the chlorophyll fluorescence, increased the production of proline and improved the total antioxidant capacity in leaves. The association with the endophyte also up regulated the activity of the Pyrroline-5-carboxylate synthase (P5CS), which is critical for the synthesis of proline.ConclusionA mycorrhizal association between P. indica and rice seedlings provided a multifaceted protection to rice plants under osmotic stress (− 0.295 MPa).Electronic supplementary materialThe online version of this article (10.1186/s12284-018-0226-1) contains supplementary material, which is available to authorized users.
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.