The limited self-repair capacity of articular cartilage has motivated the development of stem cell therapy based on artificial scaffolds that mimic the extracellular matrix (ECM) of cartilage tissue. In view of the specificity of articular cartilage, desirable tissue adhesiveness and stable mechanical properties under cyclic mechanical loads are critical for cartilage scaffolds. Herein, we developed an injectable and degradable organic−inorganic hybrid hydrogel as a cartilage scaffold based on polyhedral oligomeric silsesquioxane (POSS)-cored polyphosphate and polysaccharide. Specifically, acrylated 8-arm star-shaped POSS-poly(ethyl ethylene phosphate) (POSS-8PEEP-AC) was synthesized and crosslinked with thiolated hyaluronic acid (HA-SH) to form a degradable POSS-PEEP/HA hydrogel. Incorporation of POSS in the hydrogel increased the mechanical properties. The POSS-PEEP/HA hydrogel showed enzymatic biodegradability and favorable biocompatibility, supporting the growth and differentiation of human mesenchymal stem cells (hMSCs). The chondrogenic differentiation of encapsulated hMSCs was promoted by loading transforming growth factor-β 3 (TGF-β 3 ) in the hydrogel. In addition, the injectable POSS-PEEP/HA hydrogel was capable of adhering to rat cartilage tissue and resisting cyclic compression. Furthermore, in vivo results revealed that the transplanted hMSCs encapsulated in the POSS-PEEP/HA hydrogel scaffold significantly improved cartilage regeneration in rats, while the conjugation of TGF-β 3 achieved a better therapeutic effect. The present work demonstrated the potential of the injectable, biodegradable, and mechanically enhanced POSS-PEEP/HA hybrid hydrogel as a scaffold biomaterial for cartilage regeneration.
Tumor-associated macrophages (TAMs)-based immunotherapy is a promising strategy. Since TAMs are mainly composed of M2-type macrophages, they have a promoting effect on tumor growth, invasion, and metastasis. M2-type macrophages contain a specific receptor CD163 on their surface, providing a prerequisite for active targeting to TAMs. In this study, we prepared CD163 monoclonal antibody modified doxorubicin-polymer prodrug nanoparticles (abbreviated as mAb-CD163-PDNPs) with pH responsiveness and targeted delivery. First, DOX was bonded with the aldehyde group of a copolymer by Schiff base reaction to form an amphiphilic polymer prodrug, which could self-assemble into nanoparticles in the aqueous solution. Then, mAb-CD163-PDNPs were generated through a “Click” reaction between the azide group on the surface of the prodrug nanoparticles and dibenzocyclocytyl-coupled CD163 monoclonal antibody (mAb-CD163-DBCO). The structure and assembly morphology of the prodrug and nanoparticles were characterized by 1H NMR, MALDI-TOF MS, FT-IR UV-vis spectroscopy, and dynamic light scattering (DLS). In vitro drug release behavior, cytotoxicity, and cell uptake were also investigated. The results show that the prodrug nanoparticles have regular morphology and stable structure, especially mAb-CD163-PDNPs, which can actively target TAMs at tumor sites, respond to the acidic environment in tumor cells, and release drugs. While depleting TAMs, mAb-CD163-PDNPs can actively enrich drugs at the tumor site and have a strong inhibitory effect on TAMs and tumor cells. The result of the in vivo test also shows a good therapeutic effect, with a tumor inhibition rate of 81%. This strategy of delivering anticancer drugs in TAMs provides a new way to develop targeted drugs for immunotherapy of malignant tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.