Sarcopenia is an age-related condition that is characterized by progressive and generalized loss of muscle mass and function. Exercise treatment has been the most commonly used intervention among elderly populations. We performed a systematic review and meta-analysis to evaluate the available literature related to the effects of exercise interventions/programs on muscle mass, muscle strength and physical performance in older adults with sarcopenia. We searched PubMed, EMBASE, MEDLINE and the Web of Science for randomized controlled trials and controlled clinical trials exploring exercise in older adults with sarcopenia published through July 2019 without any language restrictions. Pooled analyses were conducted using Review Manager 5.3, with standardized mean differences (SMDs) and fixed-effect models. A total of 3898 titles and abstracts were initially identified, and 22 studies (1041 individuals, 80.75% females, mean age ranged from 60.51 to 85.90 years) were included in the meta-analysis. The exercise programs in the studies consisted of 30 to 80 min of training, with 1 to 5 training sessions weekly for 6 to 36 weeks. Muscle strength (grip strength [SMD 0.57, 95 % CI 0.42 to 0.73, P <0.00001] and timed five chair stands [SMD-0.56, 95 % CI-0.85 to-0.28, P < 0.0001]) and physical performance (gait speed [SMD 0.44, 95 % CI 0.26 to 0.61, P < 0.00001] and the timed up and go test [SMD-0.97, 95 % CI-1.22 to-0.72, P < 0.00001]) showed significant improvement following exercise treatment, while no differences in muscle mass (ASM [SMD 0.15, 95 % CI-0.05 to 0.36, P = 0.15] and ASM/height 2 [SMD 0.21, 95 % CI-0.05 to 0.48, P = 0.12]) were detected. Exercise programs showed overall significant positive effects on muscle strength and physical performance but not on muscle mass in sarcopenic older adults.
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is involved in various diseases. IL-33 exerts its effects via its heterodimeric receptor complex, which comprises suppression of tumorigenicity 2 (ST2) and the IL-1 receptor accessory protein (IL-1RAP). Increasing evidence has demonstrated that IL-33/ST2 signaling plays diverse but crucial roles in the homeostasis of the central nervous system (CNS) and the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infection, trauma, and ischemic stroke. In the current review, we focus on the functional roles and cellular signaling mechanisms of IL-33 in the CNS and evaluate the potential for diagnostic and therapeutic applications.
Following severe spinal cord injury (SCI), dysregulated neuroinflammation causes neuronal and glial apoptosis, resulting in scar and cystic cavity formation during wound healing and ultimately the formation of an atrophic microenvironment that inhibits nerve regrowth. Because of this complex and dynamic pathophysiology, a systemic solution for scar‐ and cavity‐free wound healing with microenvironment remodeling to promote nerve regrowth has rarely been explored. A one‐step solution is proposed through a self‐assembling, multifunctional hydrogel depot that punctually releases the anti‐inflammatory drug methylprednisolone sodium succinate (MPSS) and growth factors (GFs) locally according to pathophysiology to repair severe SCI. Synergistically releasing the anti‐inflammatory drug MPSS and GFs in the hydrogel depot throughout SCI pathophysiology protects spared tissues/axons from secondary injury, promotes scar boundary‐ and cavity‐free wound healing, and results in permissive bridges for remarkable axonal regrowth. Behavioral and electrophysiological studies indicate that remnants of spared axons, not regenerating axons, mediate functional recovery, strongly suggesting that additional interventions are still required to render the rebuilt neuronal circuits functional. These findings pave the way for the development of a systemic solution to treat acute SCI.
Background Supramolecular theranostics have exhibited promising potentials in disease diagnosis and therapy by taking advantages of the dynamic and reversible nature of non-covalent interactions. It is extremely important to figure out the stability of the driving forces in physiological environment for the preparation of theranostic systems. Methods The host−guest complexation between cucurbit[8]uril (CB[8]), 4,4′-bipyridinium, and napththyl guest was fully studied using various characterizations, including nuclear magnetic resonance spectroscopy, ultraviolet–visible (UV–vis) spectroscopy, isothermal titration calorimetry (ITC). The association constants of this ternary complex were determined using isothermal titration calorimetry. The stability of the non-covalent interactions and self-assemblies form from this molecular recognition was confirmed by UV–vis spectroscopy and dynamic light scattering (DLS). A supramolecular nanomedicine was constructed on the basis of this 1:1:1 ternary recognition, and its in vitro and in vivo anticancer efficacy were thoroughly evaluated. Positron emission tomography (PET) imaging was used to monitor the delivery and biodistribution of the supramolecular nanomedicine. Results Various experiments confirmed that the ternary complexation between 4,4′-bipyridinium, and napththyl derivative and CB[8] was stable in physiological environment, including phosphate buffered solution and cell culture medium. Supramolecular nanomedicine (SNM@DOX) encapsulating a neutral anticancer drug (doxrubincin, DOX) was prepared based on this molecular recognition that linked the hydrophobic poly(ε-caprolactone) chain and hydrophilic polyethylene glycol segment. The non-covalent interactions guaranteed the stability of SNM@DOX during blood circulation and promoted its tumor accumulation by taking advantage of the enhanced permeability and retention effect, thus greatly improving the anti-tumor efficacy as compared with the free drug. Conclusion Arising from the host-enhanced charge-transfer interactions, the CB[8]-based ternary recognition was stable enough in physiological environment, which was suitable for the fabrication of supramolecular nanotheranostics showing promising potentials in precise cancer diagnosis and therapy. Graphic Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.