Abstract:The effect of electric current on inclusion agglomeration in molten metal has been investigated. It is found that the agglomeration is dependent on the electric current density, distance between inclusions and orientation of electric field. Electric current retards the agglomeration unless two inclusions are aligned along or closely to the current flow streamlines and the distance between inclusions is less than a critical value. The mechanism is also validated in the computation of cluster agglomeration. The numerical results provide a comprehensive indication for the current-induced inclusion removal and current-induced inclusion elongation. When the inclusions are in long thin shape, the calculation predicts the current-induced microstructure alignment and current-induced microstructure refinement phenomena.
A mesoscopic simulation method based on the integration of dissipative particle dynamics (DPD), smoothed particle hydrodynamics (SPH) and computational thermodynamics (CT) has been developed. The kinetic behaviours of miscible and immiscible fluids were investigated. The interaction force between multicomponent mesoscopic particles is derived from the system free energy. The diffusivity of the components in non-ideal solution is determined by the chemical potential. The proposed method provides convincing predictions to the effects of convection, diffusion and microscopic interaction on the non-equilibrium evolution of engineering fluids, and demonstrates a potential to simulate more complicated phenomena in materials processing.
A 3D-structured anode material, planting core-shell Si@TiN into an amorphous carbon slag (3D STC), was synthesized via a facile pyrolyzing process in assistance with the low-temperature reduction route in a liquid Na-NH3 system. The as-prepared samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and galvanostatic discharge-charge tests. From morphological analysis, TiN nanoparticles were homogeneously dispersed on the surface of Si to form the Si@TiN core-shell structure, subsequently plating into an amorphous C slag to form the 3D STC composite. The electrochemical capacity of the 3D STC anode was measured at a higher rate of 1 C with the cut-off voltages of 0.01 V and 1.5 V. It was found that the initial charge capacity reached up to 1604.6 mA h g(-1). In particular, the reversible charge capacity was as high as 588.7 mA h g(-1) over 100 cycles, with a small capacity loss of about 0.63% per cycle, exhibiting the excellent cycle stability of the 3D STC anode at the higher rate of 1 C. Furthermore, the reversible capacity of the 3D STC anode decreased from 2048.8 mA h g(-1) to 624.0 mA h g(-1) with increasing the current rate from 0.1 C to 2 C, while it was still maintained at 1419.7 mA h g(-1) as the current rate returned to 0.1 C. Consequentially, the 3D structure with a continuous conductive path could provide facile lithium insertion/extraction and fast electron transfer, making for the high rate capacity and good cycle stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.