Baihua meta-igneous complex consists mainly of pyroxenite-gabbro(diorite)-diorite-quartz diorite. They form a complete comagmatic evolutionary series. The geochemical characteristics of basic-intermediate basic igneous rocks indicate that they belong to a tholeiite suite. The REE distribution pattern is nearly flat type and LREE is slightly enriched type, and their primitive mantle-normalized and MORB-normalized trace element spider diagrams are generally similar; the LIL elements (LILE) Cs, Ba, Sr, Th and U are enriched, but Rb, K and the HFSEs Nb, P, Zr, Sm, Ti and Y are relatively depleted. All these show comagmatic evolution and origin characteristics. The tectonics environment discrimination of trace element reveals that these igneous complexes formed in an island-arc setting. The LA-ICP-MS single-zircons U-Pb age of Baihua basic igneous complex is 434.6±1.5 Ma (MSWD = 1.3), which proves that the formation time of the island-arc type magmatite in the northern zone of West Qinling is Late Ordovician or Early Silurian, also reveals that the timing of subduction of paleo-ocean basin represented by the Guanzizhen ophiolite and resulting island-arc-type magmatic activities is probably Middle-Late Ordovician to Early Silurian. basic igneous complex, island-arc setting, LA-ICP-MS, zircons U-Pb isotopic ages, Tianshui area, West Qinling
:
This study focuses on the zircon U–Pb geochronology and geochemistry of the Bairiqiete granodiorite intrusion (rock mass) from the Buqingshan tectonic mélange belt in the southern margin of East Kunlun. The results show that the zircons are characterized by internal oscillatory zoning and high Th/U (0.14–0.80), indicative of an igneous origin. LA–ICP–MS U–Pb dating of zircons from the Bairiqiete granodiorite yielded an age of 439.0 ± 1.9 Ma (MSWD = 0.34), implying that the Bairiqiete granodiorite formed in the early Silurian. Geochemical analyses show that the rocks are medium‐K calc‐alkaline, relatively high in Al2O3 (14.57–18.34 wt%) and metaluminous to weakly peraluminous. Rare‐earth elements have low concentrations (45.49–168.31 ppm) and incline rightward with weak negative to weak positive Eu anomalies (δ5Eu = 0.64–1.34). Trace‐element geochemistry is characterized by negative anomalies of Nb, Ta, Zr, Hf and Ti and positive anomalies of Rb, Th and Ba. Moreover, the rocks have similar geochemical features with adakites. The Bairiqiete granodiorite appears to have a continental crust source and formed in a subduction‐related island‐arc setting. The Bairiqiete granodiorite was formed due to partial melting of the lower crust and suggests subduction in the Buqingshan area of the Proto‐Tethys Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.