The construction of the future energy structure of China under the 2050 carbon-neutral vision requires compact direct current (DC) gas-insulation equipment as important nodes and solutions to support electric power transmission and distribution of long-distance and large-capacity. This paper reviews China's 10-year progress in DC gas-insulated equipment. Important progresses in basic research and industry perspective are presented, with related scientific issues and technical bottlenecks being discussed. The progress in DC gas-insulated equipment worldwide (Europe, Japan, America) is also reported briefly.
In this letter, we report functions of surface roughening and fluorination on suppressing linear metal particle-induced spacer surface charge accumulation. An appropriate increase in spacer surface conductivity by short-term fluorination and roughening not only increases the metal particle lifting voltage, but also weakens the particle activation. The spacer surface charge shows reduced charge density in roughened spacer, while fluorination modification significantly suppresses the charge density on the spacer surface. For roughened and fluorinated samples, the decrease of surface charge density and the intrinsic lower electric field (due to an increase in conductivity) near the triple junction both contribute to a higher particle lifting voltage. The content in this letter provides an approach to effectively suppress the charge accumulation induced by linear metal particles.
To suppress the charge accumulation on the spacer surface in direct current (DC) gas insulated transmission line (GIL) is an important and emergent issue for the development of a clean, safe and economic smart grid. A design method of the DC spacer is proposed, and a spacer prototype is prepared and evaluated both by simulation and type test. The DC withstand voltage test and polarity reversal test are performed using the new DC spacer compared with a commercialised 220 kV AC spacer. The simulation results indicate that the surface electric field and surface charge of the DC spacer are lower than those of the alternating current (AC) spacer under DC voltage. The test results verify that the surface flashover voltage of this DC spacer is higher than that of the AC spacer. The potential feasibility of the spacer design for HVDC is discussed. It is hoped that the content of this paper can bring new ideas in the development of HVDC gas insulated equipment.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The movement of metal particles in the electric field of the DC gas-insulated transmission line (GIL) may cause local electric field distortion on the surface of the insulator, which seriously affects the operation stability of GIL. In this paper, based on a ±320 kV GIL platform, the movement characteristics of metal particles (aluminum blocks, aluminum wires, aluminum balls) inside the GIL are studied. The suppression effect of particle activity for particle trapping and surface coating are experimentally studied in DC electric field. The relationship between particle trap porosity and particle suppression effect are discussed and verified with experiments. The research results show that under negative voltage, the minimum take-off voltage of metal particles in ±320 kV GIL is -190 kV, which is far lower than the steady-state operating voltage of GIL. Once the spherical and blocky particles take off, they will continue to reciprocate rapidly between the conductors. When the block particles are close to the insulator, they might be attracted and adsorbed on the surface of the insulator. Metal wires after taking off tends to show “firefly" movement near the high-voltage conductor. The coating has a significant effect on increasing the take-off electric field of metal particles. It is verified that the traditional AC GIL particle trap is not effective in inhibiting particles in DC voltage. The suppression of the DC GIL particle is positively related to the porosity of the particle trap to a certain extent. The conclusions of this paper can be reference for the development of future stable and reliable DC gas-insulated equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.