We present the design, fabrication and characterization of polymer optical waveguides using a digital ultraviolet (UV) lithography. Grayscale optical exposure with a nonlinear compensation in quadratic form is applied to minimize the stitching loss of the transition zone between two adjacent subpatterns. Proximity effects in lithography process are compensated based on an exposure dose-map that is calculated under the approximation of scattered light pixel with a Gaussian distribution. The bending loss and propagation loss of the fabricated polymer waveguides are experimentally characterized to be around 0.1 dB/90°-bend and 0.238 dB/mm, respectively. Moreover, 1 2 multimode-interference power splitter, 1 2 Y-branch power splitter and microring resonator are demonstrated to show the feasibility of the lithography technology on rapid fabrication of waveguides. Such a UV lithography technology flexibly manipulates huge-number light pixels for all-digital grayscale and dynamic optical exposure and thus can enable the fabrication of novel optical waveguide-based devices and sensors, such as 2.5D waveguides for multimode crossing and polymer waveguide devices for biosensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.