A PVP-assisted pyrolysis strategy that can simply but efficiently transform zeolitic imidazolate framework-67 (ZIF-67) into a Co-embedded N-enriched meso/microporous carbon material (Co-NC) is reported for the first time. Without further acid treatment, Co-NC can reach an excellent electroactivity and long-term durability toward the oxygen-reduction reaction (ORR) and the oxygen-evolution reaction (OER).
We have synthesized a core@shell nanocomposite using biocompatible bovine serum albumin (BSA) as the core and a pH-sensitive metal-organic framework (MOF) as the shell. Doxorubicin (DOX)/BSA nanoparticles as cores have been prepared. A zeolitic imidazolate framework-8 (ZIF-8) layer has been coated on the outer surface of the DOX/BSA core. The ZIF layer acts as a capsule for the safe storage of DOX under physiological conditions. An efficient pH-responsive drug delivery system using a BSA/DOX@ZIF, in which the drug is not released in PBS at pH 7.4 but is released at low pH (5.0-6.0), has been constructed. Compared to the pure ZIF, a better biocompatibility has been obtained using the BSA/DOX@ZIF. The BSA/DOX@ZIF shows a much higher efficacy than free DOX against the breast cancer cell line MCF-7. The positive charges on the outer surface of the BSA/DOX@ZIF also improve its cellular uptake.
The oxygen reduction reaction (ORR) is of significant importance in the development of fuel cells. Now, cobalt-nitrogen-doped chiral carbonaceous nanotubes (l/d-CCNTs-Co) are presented as efficient electrocatalysts for ORR. The chiral template, N-stearyl-l/d-glutamic acid, induces the self-assembly of well-arranged polypyrrole and the formation of ordered graphene carbon with helical structures at the molecular level after the pyrolysis process. Co was subsequently introduced through the post-synthesis method. The obtained l/d-CCNTs-Co exhibits superior ORR performance, including long-term stability and better methanol tolerance compared to achiral Co-doped carbon materials and commercial Pt/C. DFT calculations demonstrate that the charges on the twisted surface of l/d-CCNTs are widely separated; as a result the Co atoms are more exposed on the chiral CCNTs. This work gives us a new understanding of the effects of helical structures in electrocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.