A G-quadruplex (G4) is a well-known nucleic acid secondary structure comprising guanine-rich sequences, and has profound implications for various pharmacological and biological events, including cancers. Therefore, ligands interacting with G4s have attracted great attention as potential anticancer therapies or in molecular probe applications. To date, a large variety of DNA/RNA G4 ligands have been developed by a number of laboratories. As protein-targeting drugs face similar situations, G-quadruplex-interacting drugs displayed low selectivity to the targeted G-quadruplex structure. This low selectivity could cause unexpected effects that are usually reasons to halt the drug development process. In this review, we address the recent research on synthetic G4 DNA-interacting ligands that allow targeting of selected G4s as an approach toward the discovery of highly effective anticancer drugs.
RNA modifications contribute to RNA and protein diversity in eukaryotes and lead to amino acid substitutions, deletions, and changes in gene expression levels. Several methods have developed to profile RNA modifications, however, a less laborious identification of inosine and pseudouridine modifications in the whole transcriptome is still not available. Herein, we address the first step of the above question by sequencing synthetic RNA constructs with inosine and pseudouridine modification using Oxford Nanopore Technology, which is a direct RNA sequencing platform for rapid detection of RNA modification in a relatively less labor-intensive manner. Our analysis of multiple nanopore parameters reveals mismatch error majorly distinguish unmodified versus modified nucleobase. Moreover, we have shown that acrylonitrile selective reactivity with inosine and pseudouridine generates a differential profile between the modified and treated construct. Our results offer a new methodology to harness selectively reactive chemical probe-based modification along with existing direct RNA sequencing methods to profile multiple RNA modifications on a single RNA.
Synthetic molecules capable of DNA binding and mimicking cooperation of transcription factor (TF) pairs have long been considered a promising tool for manipulating gene expression. Our previously reported Pip-HoGu system, a programmable DNA binder pyrrole-imidazole polyamides (PIPs) conjugated to host-guest moiety, defined a general framework for mimicking cooperative TF pair-DNA interactions. Here, we supplanted the cooperation modules with left-handed (LH) γPNA modules: i.e., PIPs conjugated with nucleic acid-based cooperation system (Pip-NaCo). LH γPNA was chosen because of its bioorthogonality, sequence-specific interaction, and high binding affinity toward the partner strand. From the results of the Pip-NaCo system, cooperativity is highly comparable to the natural TF pair-DNA system, with a minimum energetics of cooperation of -3.27 kcal mol . Moreover, through changing the linker conjugation site, binding mode, and the length of γPNAs sequence, the cooperative energetics of Pip-NaCo can be tuned independently and rationally. The current Pip-NaCo platform might also have the potential for precise manipulation of biological processes through the construction of triple to multiple heterobinding systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.