In order to increase the corrosion resistance of magnesium alloy AZ91 in corrosion environments containing chlorides, the alloy surface has been modified by plasma electrolytic oxidation (PEO). The chemical composition of electrolyte in the PEO process consisted of 12 g/L Na3PO4·12 H2O and 1 g/L KOH, and a direct current was applied to the sample. The corrosion resistance of PEO coating and as-cast AZ91 (sample without PEO coating) was assessed using two different electrochemical methods: electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) in 0.1 M NaCl at laboratory temperature. In addition to the electrochemical methods, the morphology of the oxidic coating was observed in the cross-sectional and top surface view by using the SEM technique. For better determination of the microstructure and PEO coating, chemical composition EDX analysis was used. The results of the experiments show that the formation of the PEO coating on AZ91 alloy has a more positive effect on the corrosion resistance in 0.1 M NaCl based on electrochemical methods than in the case of the formed coating on AZ31 alloy from the previous study. Based on electrochemical measurements in the selected environment, the formation of PEO coating on AZ91 was accompanied by a significant increase in polarisation resistance after short-term exposure compared to the as-cast surface. The EIS results showed a 73 times higher Rp value for PEO coated AZ91 when compared to the as-cast AZ91. Correspondingly, a 27 times lower icorr value was observed for PEO coated AZ91 than in the case of substrate AZ91 in 0.1 M NaCl. At the same time, the typically porous and inhomogeneous structure of the formed PEO coating on the magnesium alloy AZ91 was demonstrated.
Shot peening is a well-known surface treatment method used for fatigue life improvement of cyclically loaded structural components. Since three main variables are considered in the peening process (peening intensity, coverage and peening media type), there is no direct way to choose the best combination of treatment parameters for the best performance, thus it has to be based on experience and laboratory tests. When shot peening is performed with inadequate parameters, or the peening process is not stable in time (decrease of the peening pressure, deterioration of the peening media and so on), it can result in significant degradation of the treated component fatigue properties, what is commonly called as the "overpeening" effect. When a premature fatigue fracture occurs in operation, the fracture surface analysis is usually the most important method of revealing the damage mechanism. This work is aimed at the study of the relation between the shot peening parameters and the fatigue fracture surface character on an AW 7075 aluminium alloy with an objective of identifying marks of overpeening and investigating the fatigue crack initiation mechanism. After performing the tests, it was observed that shot peening with optimized parameters creates a surface layer that is able to change the mechanism of the fatigue crack propagation and improve fatigue strength. On the other hand, using extensive peening parameters decrease the fatigue strength due to the creation of surface cracks and surface layer delamination.
Wrought AZ31 magnesium alloy was used as the experimental material for fluoride conversion coating preparation in Na[BF4] molten salt. Two coating temperatures, 430 °C and 450 °C, and three coating times, 0.5, 2, and 8 h, were used for the coating preparation. A scanning electron microscope and energy-dispersive X-ray spectroscopy were used for an investigation of the surface morphology and the cross-sections of the prepared coatings including chemical composition determination. The corrosion resistance of the prepared specimens was investigated in terms of the potentiodynamic tests, electrochemical impedance spectroscopy and immersion tests in the environment of simulated body fluids at 37 ± 2 °C. The increase in the coating temperature and coating time resulted in higher coatings thicknesses and better corrosion resistance. Higher coating temperature was accompanied by smaller defects uniformly distributed on the coating surface. The defects were most probably created due to the reaction of the AlxMny intermetallic phase with Na[BF4] molten salt and/or with the product of its decomposition, BF3 compound, resulting in the creation of soluble Na3[AlF6] and AlF3 compounds, which were removed from the coating during the removal of the secondary Na[MgF3] layer. The negative influence of the AlxMny intermetallic phase was correlated to the particle size and thus the size of created defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.