SummaryNanofibers were prepared from polycaprolactone, polylactide and polyvinyl alcohol using NanospiderTM technology. Polyethylene glycols with molecular weights of 2 000, 6 000, 10 000 and 20 000 g/mol, which can be used to moderate the release profile of incorporated pharmacologically active compounds, served as model molecules. They were terminated by aromatic isocyanate and incorporated into the nanofibers. The release of these molecules into an aqueous environment was investigated. The influences of the molecular length and chemical composition of the nanofibers on the release rate and the amount of released polyethylene glycols were evaluated. Longer molecules released faster, as evidenced by a significantly higher amount of released molecules after 72 hours. However, the influence of the chemical composition of nanofibers was even more distinct – the highest amount of polyethylene glycol molecules released from polyvinyl alcohol nanofibers, the lowest amount from polylactide nanofibers.
The addition of PEG of a particular MW enables to control CsA release from PLA nanofibrous carriers. The biological activity of CsA-loaded PLA nanofibers with PEG persists even after 144 h of previous extraction. Prepared materials are promising for local immunosuppression in various medical applications.
Local application of anticancer agents prolongs the presence time and increases the concentration of drug in the target place and therefore may reduce serious side effects compared to drug systemic administration. The preparation of fibrous materials of polylactide (PLA) and polyethylene glycol (PEG) loaded with paclitaxel (PTX, 1 or 10 wt%) is presented. Scanning electron microscopy proves that PTX is homogeneously incorporated into the fibers. The addition of PEG of various molecular weights (6, 20, or 35 kDa) ensures the release of significantly higher amounts of hydrophobic PTX in a prolonged release time compared to the fibers containing PTX only. Present PLA-PEG fibrous carriers can serve as a drug depot for PTX since they exhibit significant toxicity for cancer cell lines in several-day experiment. They are promising for local recurrence therapy, where the initial release is efficient to kill tumor cells and continued release can prevent their subsequent proliferation.
Nanofibers were prepared from polycaprolactone, polylactide and polyvinyl alcohol using Nanospider TM technology. Polyethylene glycols with molecular weights of 2 000, 6 000, 10 000 and 20 000 g/mol, which can be used to moderate the release profile of incorporated pharmacologically active compounds, served as model molecules. They were terminated by aromatic isocyanate and incorporated into the nanofibers. The release of these molecules into an aqueous environment was investigated. The influences of the molecular length and chemical composition of the nanofibers on the release rate and the amount of released polyethylene glycols were evaluated. Longer molecules released faster, as evidenced by a significantly higher amount of released molecules after 72 hours. However, the influence of the chemical composition of nanofibers was even more distinct -the highest amount of polyethylene glycol molecules released from polyvinyl alcohol nanofibers, the lowest amount from polylactide nanofibers.1939
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.