Recombinant bacterial ghosts loaded with plasmids were tested as an antigen delivery system and as a potential mediator of maturation for human monocyte-derived dendritic cells (DCs). Bacterial ghosts are cell envelopes derived from Gram-negative bacteria; the intracellular content is released by the controlled expression of plasmid-encoded lysis gene E of PhiX174. All the cell surface structures of the native bacteria, including the outer membrane proteins, adhesins, LPS, lipid A, and peptidoglycans, are preserved. Co-incubation of immature DCs with ghosts resulted in decreased expression of CD1a, CD80, and CD83 molecules, while addition of maturation mix (TNF-alpha, IL-1 beta, IL-6, and PGE2) to the cultures enhanced expression of these molecules. No marked changes were observed in the expression of the CD11c, CD40, and CD86 surface molecules. The exposure of DCs to ghosts in combination with maturation mix resulted in a nonsignificant increase in their ability to activate T cells. DCs co-incubated with bacterial ghosts carrying plasmids encoding GFP in combination with maturation mix exhibited high expression levels of GFP (up to 85%). These results indicate that in addition to their well-established use as vaccines, bacterial ghosts can also be used as carriers of nucleic acid-encoded antigens.
The combination of RF and optical energies proved its safety and efficacy for hair removal, which is comparable with diode lasers and approximately 20% more efficient than 'pure' IPL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.