The skin is a complex layer system and the most important barrier between the environment and the organism. In this review, we describe some widespread skin problems, with a focus on eczema, which are affecting more and more people all over the world. Most of treatment methods for atopic dermatitis (AD) are focused on increasing skin moisture and protecting from bacterial infection and external irritation. Topical and transdermal treatments have specific requirements for drug delivery. Breathability, flexibility, good mechanical properties, biocompatibility, and efficacy are important for the patches used for skin. Up to today, electrospun fibers are mostly used for wound dressing.Their properties, however, meet the requirements for skin patches for the treatment of AD. Active agents can be incorporated into fibers by blending, coaxial or side-by-side electrospinning, and also by physical absorption postprocessing. Drug release from the electrospun membranes is affected by drug and polymer properties and the technique used to combine them into the patch. We describe in detail the in vitro release mechanisms, parameters affecting the drug transport, and their kinetics, including theoretical approaches. In addition, we present the current research on skin patch design. This review summarizes the current extensive know-how on electrospun fibers as skin drug delivery systems, while underlining the advantages in their prospective use as patches for atopic dermatitis.
Atopic
dermatitis (eczema) is a widespread disorder, with researchers
constantly looking for more efficacious treatments. Natural oils are
reported to be an effective therapy for dry skin, and medical textiles
can be used as an alternative or supporting therapy. In this study,
fibrous membranes from poly(vinyl butyral-co-vinyl alcohol-co-vinyl
acetate) (PVB) with low and high molecular weights were manufactured
to obtain nano- and micrometer fibers
via
electrospinning
for the designed patches used as oil carriers for atopic skin treatment.
The biocompatibility of PVB patches was analyzed using proliferation
tests and scanning electron microscopy (SEM), which combined with
a focused ion beam (FIB) allowed for the 3D visualization of patches.
The oil spreading tests with evening primrose, black cumin seed, and
borage were verified with cryo-SEM, which showed the advantage nanofibers
have over microfibers as carriers for low-viscosity oils. The skin
tests expressed the usability and the enhanced oil delivery performance
for electrospun patches. We demonstrate that through the material
nano- and microstructure, commercially available polymers such as
PVB have great potential to be deployed as a biomaterial in medical
applications, such as topical treatments for chronic skin conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.