Proper management and genetic monitoring of the modern European bison (Bison bonasus) population is one of the most important responsibilities for this species’ conservation. Up-to-date, complex genetic analysis performed using a consistent molecular method is needed for population management as a tool to further validate and maintain the genetic diversity of the species. The identification of the genetic line when pedigree data are missing, as well as the identification of parentage and individuals, are crucial for this purpose. The aim of our research was to create a small but informative panel of SNP (single-nucleotide polymorphism) markers that can be used for routine genotyping of the European bison at low cost. In our study, we used a custom-designed microarray to genotype a large number of European bison, totaling 455 samples from two genetic lines. The results of this analysis allowed us to select highly informative markers. In this paper, we present an effective single nucleotide polymorphism set, divided into separate panels to perform genetic analyses of European bison, which is needed for population monitoring and management. We proposed a total of 20 SNPs to detect hybridization with Bos taurus and Bison bison, a panel of 50 SNPs for individuals and parentage identification, as well as a panel of 30 SNPs for assessing membership of the genetic line. These panels can be used together or independently depending on the research goal and can be applied using various methods.
Common rye (Secale cereale L.) is one of the most important cereals in Europe. Nevertheless, its germplasm collections are among the least numerous compared with cereals. There are only about 27,000 Secale accessions in 70 gene banks around the world. Despite extensive research on the molecular characterization of genetic resources, only a fraction of this collection has been described. The main objective of the presented study was to perform genotypic and phenotypic characterization of an obsolete gene pool represented by 100 accessions originated from 28 countries around the world and preserved in the gene bank of the Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in Powsin. Genetic analysis using simple sequence repeat markers showed that the obsolete gene pool is relatively large. This indicates that different sources of variability were used in breeding programs. However, the genetic variation is in no way related to the place of origin. Despite the great differences in the genetic make-up, the collection showed a broadly common phenotype. This could result in a low level of interest among breeders in the stored germplasm, undervalued as a source of important but not easily observable traits, e.g., high disease resistance, which was found in some accessions.
Climate-related changes have a severe impact on wetland ecosystems and pose a serious challenge for wetland-dependent animals as their preferred habitats decline, lose spatial continuity, and appear as isolated islands in the landscape. In this paper, we studied the effects of long-term habitat changes (drying out and fragmentation of wet non-forest habitats) on the genetic structure of the population of the root vole Microtus oeconomus, a species preferring moist habitats. We intended to check what barriers and what distances affected its genetic isolation on a local scale. The study was conducted in the area of Kampinoski National Park in central Poland (Europe). DNA variability of 218 root vole individuals was assessed by genotyping nine microsatellite loci. Despite its spatial fragmentation, the studied population did not seem to be highly structured, and isolation through distance was the main differentiating factor. Even a distance of several kilometres of unfavourable natural habitats and unfavourable terrain did not exclude the exchange of genes between subpopulations. Our results suggest that the genetic effects of the fragmentation of wetlands have been considerably compensated (delayed) due to the migratory abilities of this species. Our study does not provide clear results on the impact of anthropogenic barriers but suggests that such barriers may have a much stronger effect than natural barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.