Recommended by Maurizio PalesiNetwork-on-chip-(NoC-) based application-specific systems on chip, where information traffic is heterogeneous and delay requirements may largely vary, require individual capacity assignment for each link in the NoC. This is in contrast to the standard approach of on-and off-chip interconnection networks which employ uniform-capacity links. Therefore, the allocation of link capacities is an essential step in the automated design process of NoC-based systems. The algorithm should minimize the communication resource costs under Quality-of-Service timing constraints. This paper presents a novel analytical delay model for virtual channeled wormhole networks with nonuniform links and applies the analysis in devising an efficient capacity allocation algorithm which assigns link capacities such that packet delay requirements for each flow are satisfied.
The storage subsystem has undergone tremendous innovation in order to keep up with the ever-increasing demand for throughput. Non Volatile Memory Express (NVMe) based solid state devices are the latest development in this domain, delivering unprecedented performance in terms of latency and peak bandwidth. NVMe drives are expected to be particularly beneficial for I/O intensive applications, with databases being one of the prominent use-cases.This paper provides the first, in-depth performance analysis of NVMe drives. Combining driver instrumentation with system monitoring tools, we present a breakdown of access times for I/O requests throughout the entire system. Furthermore, we present a detailed, quantitative analysis of all the factors contributing to the low-latency, high-throughput characteristics of NVMe drives, including the system software stack. Lastly, we characterize the performance of multiple cloud databases (both relational and NoSQL) on stateof-the-art NVMe drives, and compare that to their performance on enterprise-class SATA-based SSDs. We show that NVMe-backed database applications deliver up to 8Γ superior client-side performance over enterprise-class, SATAbased SSDs.
The paper introduces Network-on-Chip (NoC) design methodology and low cost mechanisms for supporting efficient cache access and cache coherency in future high-performance Chip Multi Processors (CMPs). We address previously proposed CMP architectures based on Non Uniform Cache Architecture (NUCA) over NoC, analyze basic memory transactions and translate them into a set of network transactions. We first show how a simple, generic NoC which is equipped with needed module interface functionalities can provide infrastructure for the coherent access of both static and dynamic NUCA. Then we show how several low cost mechanisms incorporated into such a Vanilla NoC can facilitate CMP and boost performance of a cache coherent NUCA CMP. The basic mechanism is based on priority support embedded in the NoC, which differentiates between short control signals and long data messages to achieve a major reduction in cache access delay. The low cost Priority-based NoC is extremely useful for increasing performance of almost any other CMP transaction (i.e. uncached and cache-coherenet R/W, search in DNUCA, isolating low priority traffic, synchronization and mutual exclusion support). Priority-based NoC along with the discussed NoC interfaces are evaluated in detail using cycleaccurate CMP-NoC simulations across several SPLASH-2 benchmarks and static web content serving benchmarks showing substantial L2 cache access delay reduction and overall program speedup. For further system improvements, we introduce additional low cost NoC mechanisms that include: virtual invalidation rings, efficient store-and-forward multicast for short messages which is embedded within a wormhole NoC, and a linecache search mechanism for the efficient operation of dynamic NUCA. These mechanisms can also expedite not only cache coherency transactions but also other basic CMP transactions such as search and serialization primitives support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright Β© 2024 scite LLC. All rights reserved.
Made with π for researchers
Part of the Research Solutions Family.