Carrier recombination and scattering at the semiconductor boundaries can substantially limit the device efficiency. However, surface and interface recombination is generally neglected in the nitride-based devices. Here, we study carrier recombination and diffusivity in AlGaN/GaN/sapphire heterointerfaces with AlGaN barriers of different quality. We employ the light induced transient grating and time-resolved photoluminescence spectroscopy techniques to extract carrier lifetime in different depths of the GaN buffer as well as in the AlGaN barrier, and to evaluate the carrier diffusion coefficient in the buffer. Moreover, we assess interface recombination velocity, Shockley-Read-Hall and radiative recombination rates. We reveal the adverse barrier influence on carrier dynamics in the underlying buffer: AlGaN barrier accelerates the nonradiative carrier recombination in the GaN buffer. The interface recombination velocity in the GaN buffer increases with decreasing AlGaN barrier quality, and the dominating recombination mechanism switches from Shockley-Read-Hall to interface recombination. These phenomena are governed by a cumulative effect of various interface-deteriorating barrier defects. Meanwhile, the carrier diffusivity in the GaN buffer is not affected by the AlGaN barrier. We conclude that barrier-accelerated interface recombination can become a major carrier loss mechanism in AlGaN/GaN interface, and may substantially limit the efficiency in nitride-based UV LEDs.
Indium nitride has a good potential for infrared optoelectronics, yet it suffers from fast nonradiative recombination, the true origin of which has not been established with certainty. The diffusion length of free carriers at high densities is not well investigated either. Here, we study carrier recombination and diffusion using the light-induced transient grating technique in InN epilayers grown by pulsed MOCVD on c-plane sapphire. We show that direct Auger recombination governs the lifetime of carriers at densities above ~1018 cm−3. The measured Auger recombination coefficient is (8 ± 1) × 10−29 cm−3. At carrier densities above ~5 × 1019 cm−3, we observe the saturation of Auger recombination rate due to phase space filling. The diffusion coefficient of holes scales linearly with carrier density, increasing from 1 cm2/s in low-doped layers at low excitations and up to ~40 cm2/s at highest carrier densities. The resulting carrier diffusion length remains within 100–300 nm range, which is comparable to the light absorption depth. This feature is required for efficient carrier extraction in bipolar devices, thus suggesting MOCVD-grown InN as the material fit for photovoltaic and photonic applications.
Internal quantum efficiency (IQE) is studied in a large set of polar and non-polar InGaN/GaN quantum well structures, 57 samples in total. In search for universal factors limiting IQE, the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.