Abstract. In this paper, we present and analyze a novel global database of
soil infiltration measurements, the Soil Water Infiltration Global (SWIG)
database. In total, 5023 infiltration curves were collected across all
continents in the SWIG database. These data were either provided and quality
checked by the scientists who performed the experiments or they were
digitized from published articles. Data from 54 different countries were
included in the database with major contributions from Iran, China, and the USA.
In addition to its extensive geographical coverage, the collected
infiltration curves cover research from 1976 to late 2017. Basic information
on measurement location and method, soil properties, and land use was
gathered along with the infiltration data, making the database valuable for
the development of pedotransfer functions (PTFs) for estimating soil hydraulic
properties, for the evaluation of infiltration measurement methods, and for
developing and validating infiltration models. Soil textural information
(clay, silt, and sand content) is available for 3842 out of 5023 infiltration
measurements (∼ 76%) covering nearly all soil USDA textural classes
except for the sandy clay and silt classes. Information on land use is
available for 76 % of the experimental sites with agricultural land use as
the dominant type (∼ 40%). We are convinced that the SWIG database
will allow for a better parameterization of the infiltration process in land
surface models and for testing infiltration models. All collected data and
related soil characteristics are provided online in
*.xlsx and *.csv formats for reference, and we add a disclaimer that the
database is for public domain use only and can be copied freely by
referencing it. Supplementary data are available at
https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data
quality assessment is strongly advised prior to any use of this database.
Finally, we would like to encourage scientists to extend and update the SWIG database
by uploading new data to it.
Abstract. Climate change increases the occurrence and severity of
droughts due to increasing temperatures, altered circulation patterns, and
reduced snow occurrence. While Europe has suffered from drought events in
the last decade unlike ever seen since the beginning of weather recordings,
harmonized long-term datasets across the continent are needed to monitor
change and support predictions. Here we present soil moisture data from 66
cosmic-ray neutron sensors (CRNSs) in Europe (COSMOS-Europe for short)
covering recent drought events. The CRNS sites are distributed across Europe
and cover all major land use types and climate zones in Europe. The raw
neutron count data from the CRNS stations were provided by 24 research
institutions and processed using state-of-the-art methods. The harmonized
processing included correction of the raw neutron counts and a harmonized
methodology for the conversion into soil moisture based on available in situ
information. In addition, the uncertainty estimate is provided with the
dataset, information that is particularly useful for remote sensing and
modeling applications. This paper presents the current spatiotemporal
coverage of CRNS stations in Europe and describes the protocols for data
processing from raw measurements to consistent soil moisture products. The
data of the presented COSMOS-Europe network open up a manifold of potential
applications for environmental research, such as remote sensing data
validation, trend analysis, or model assimilation. The dataset could be of
particular importance for the analysis of extreme climatic events at the
continental scale. Due its timely relevance in the scope of climate change
in the recent years, we demonstrate this potential application with a brief
analysis on the spatiotemporal soil moisture variability. The dataset,
entitled “Dataset of COSMOS-Europe: A European network of Cosmic-Ray
Neutron Soil Moisture Sensors”, is shared via Forschungszentrum Jülich:
https://doi.org/10.34731/x9s3-kr48 (Bogena and Ney, 2021).
Abstract:The Gallikos River basin is located in the northern part of Greece, and the coastal section is part of a deltaic system. The basin has been influenced by anthropogenic activities during the last decades, leading to continuous water resource degradation. The holistic approach of the Driver-Pressure-State-Impact-Response (DPSIR) framework was applied in order to investigate the main causes and origins of pressures and to optimize the measures for sustainable management of water resources. The major driving forces that affect the Gallikos River basin are urbanization, intensive agriculture, industry and the regional development strategy. The main pressures on water resources are the overexploitation of aquifers, water quality degradation, and decrease of river discharge. Recommended responses were based on the Water Framework Directive (WFD) 2000/60/EC, and sum up to rationalization of water resources, land use management and appropriate utilization of waste, especially so effluent. The application of the DPSIR analysis in this paper links the socioeconomic drivers to the water resource pressures, the responses based on the WFD and the national legislation and is as a useful tool for land-use planning and decision making in the area of water protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.