We study the problem of exploring an unknown undirected graph with non-negative edge weights. Starting at a distinguished initial vertex s, an agent must visit every vertex of the graph and return to s. Upon visiting a node, the agent learns all incident edges, their weights and endpoints. The goal is to find a tour with minimal cost of traversed edges. This variant of the exploration problem has been introduced by Kalyanasundaram and Pruhs in [18] and is known as a fixed graph scenario. There have been recent advances by Megow, Mehlhorn, and Schweitzer ([19]), however the main question whether there exists a deterministic algorithm with constant competitive ratio (w.r.t. to offline algorithm knowing the graph) working on all graphs and with arbitrary edge weights remains open. In this paper we study this problem in the context of advice complexity, investigating the tradeoff between the amount of advice available to the deterministic agent, and the quality of the solution. We show that Ω(n log n) bits of advice are necessary to achieve a competitive ratio of 1 (w.r.t. an optimal algorithm knowing the graph topology). Furthermore, we give a deterministic algorithm which uses O(n) bits of advice and achieves a constant competitive ratio on any graph with arbitrary weights. Finally, going back to the original problem, we prove a lower bound of 5/2 − for deterministic algorithms working with no advice, improving the best previous lower bound of 2− of Miyazaki, Morimoto, and Okabe from [20]. In this case, significantly more elaborate technique was needed to achieve the result.
A black hole is a highly harmful stationary process residing in a node of a network and destroying all mobile agents visiting the node, without leaving any trace. We consider the task of locating a black hole in a (partially) synchronous tree network, assuming an upper bound on the time of any edge traversal by an agent. The minimum number of agents capable of identifying a black hole is two. For a given tree and given starting node we are interested in the fastest-possible black hole search by two agents. For arbitrary trees we give a 5/3-approximation algorithm for this problem. We give optimal black hole search algorithms for two 'extreme' classes of trees: the class of lines and the class of trees in which any internal node (including the root which is the starting node) has at least two children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.