BackgroundThere is an increasing number of novel antilipidemic therapies under consideration. The putative hypolipidemic effect of N-acetylcysteine (NAC) and sesame oil was studied in a mouse model of dietary-induced hypercholesterolemia.MethodsMale C57bl/6 mice were assigned to the following groups: (NC) control group, (HC) group receiving test diet supplemented with 2% cholesterol and 0.5% cholic acid for 8 weeks, (HCN) group receiving the test diet with NAC supplementation (230 mg/kg p.o.) and (HCS) group fed the test diet enriched with 10% sesame oil. Total serum cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides were assayed at the beginning and at the end of the experiment. Total peroxides and nitric oxide (NO) levels were measured in the serum at the end of the experiment. Hepatic and aortic lesions were evaluated by haematoxylin-eosin staining.ResultsHigher serum levels of total and LDL-cholesterol were recorded in all groups fed the high cholesterol diet. The HCN group presented reduced lipid levels compared to HC and HCS groups. No differences were observed between HCS and HC groups. Peroxide content in serum was markedly increased in mice consuming high cholesterol diet. NAC and sesame oil administration led to a significant decrease of serum lipid peroxidation in the levels of control group, whereas only NAC restored NO bioavailability. In terms of liver histology, the lesions observed in HCN group were less severe than those seen in the other high cholesterol groups.ConclusionCo-administration of NAC, but not sesame oil, restored the disturbed lipid profile and improved hepatic steatosis in the studied diet-induced hypercholesterolemic mice. Both agents appear to ameliorate serum antioxidant defense.
Chios mastic gum (MG), a resin produced from Pistacia lentiscus var. Chia, is reported to possess beneficial cardiovascular and hepatoprotective properties. This study investigated the effect of crude Chios MG on metabolic parameters in diabetic mice. Streptozotocin-induced diabetic 12-week-old male C57bl/6 mice were assigned to three groups: NC (n=9) control; LdM (n=9) animals receiving low dose mastic for 8 weeks (20 mg/kg body weight [BW]); and HdM (n=9) animals receiving high dose mastic (500 mg/kg BW) for the same period. Serum lipid and glucose levels were determined at baseline, at 4 and 8 weeks. Serum total protein, adiponectin, and resistin levels were also measured at the end of the experiment. Histopathological examination for liver, kidney, aorta, and heart lesions was performed. After 4 weeks, MG administration resulted in decreased serum glucose and triglyceride levels in both LdM and HdM, whereas BW levels were reduced in LdM group compared with controls. At the end of the experiment, LdM presented significantly lower serum glucose, cholesterol, low-density lipoprotein cholesterol, and triglyceride levels and improved high-density lipoprotein cholesterol levels compared with control group. HdM group had ameliorated serum triglyceride levels. Hepatic steatosis observed in control group was partially reversed in LdM and HdM groups. MG administered in low dosages improves glucose and lipid disturbances in diabetic mice while alleviating hepatic damage.
For thousands of years, Chios Gum Mastic (CGM), the resin produced by the trunk of Pistachia lentiscus var Chia, has been used for culinary and medicinal purposes and several therapeutic properties have been attributed to it. CGM has been used in traditional medicine of various nations in the eastern Mediterranean area. This survey was carried out to identify biological mechanisms that could explain traditional usage and recent pharmacological findings. We reviewed the related scientific literature available from the NCBI PUBMED database on CGM studies and on natural products showing peroxisome proliferator-activated receptor (PPAR) agonist effects. We investigated whether CGM qualifies as a PPAR modulator. A large number of studies demonstrate that CGM has antioxidant, anti-inflammatory, hypolipidemic, and anticancer properties. Recently, the first evidence of CGM antidiabetic effect became known. CGM chemical composition has been extensively analyzed and the presence of several compounds, especially triterpenoids is well documented. Some of them, oleanonic acid, oleanolic acid, and gallic acid are considered to act as PPAR modulators. PPARs are nuclear receptors functioning as transcription factors and thereby controlling cellular functions at the level of gene expression. PPARs are involved in the pathways of significant diseases, such as metabolic syndrome, diabetes mellitus, dyslipidemia, inflammation, atheromatosis, and neoplasias, constituting a key target for pharmacological interventions. This article proposes that the synergistic action of some constituents of CGM on PPARs and more precisely on both PPARs isotypes-α and -γ, may be one of the major biological mechanisms via which CGM exerts its multiple effects.
Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased hypothalamic glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.