Abstract. With a lifetime risk estimated to be one in eight in industrialized countriesBreast cancer is the most frequently diagnosed cancer and the second leading cause of cancer-related death among women worldwide. According to the American Cancer Society about 12% U.S. women will develop breast cancer during their lifetime. Moreover, in 2015, about 2,300 men were diagnosed with breast cancer and 440 died from the disease (1, 2).In approximately 90% of breast cancer cases, estrogen receptor α (ERα), progesterone receptor (PR), or the human epidermal growth factor receptor2 (HER2/ERBB2) protooncogenic receptor are expressed. In many of these patients, treatment with anti-estrogens (e.g. aromatase inhibitors, tamoxifen, fulvestrant) and HER2-targeted agents has improved their survival significantly (3, 4). However, despite 35
AbstractIron deficiency (ID) is a major public health problem worldwide among children aged 0–12 months. Several factors seem to contribute to the iron-deficient state in infancy, including insufficient antenatal and neonatal iron supplementation, exclusive breastfeeding, and early umbilical cord clamping after birth. The most concerning complications of ID, except for anemia, are related to altered long-term neurodevelopment. Clinical studies have shown a negative impact of ID anemia on fetal and neonatal behavior including impairments of motor maturity, autonomic response, memory/learning, and mood. ID-induced defects during infancy seem to persist later in life, even after ID treatment. The underlying mechanisms involve dysfunctional myelination, neurotransmission alterations, and altered synaptogenesis and/or dendritogenesis. The purpose of the present review is to summarize these mechanisms and to provide recommendations for future clinical research in the field.
It is estimated that approximately 0.5%-3% of fetuses are prenatally exposed to cocaine (COC). The neurodevelopmental implications of this exposure are numerous and include motor skill impairments, alterations of social function, predisposition to anxiety, and memory function and attention deficits; these implications are commonly observed in experimental studies and ultimately affect both learning and IQ. According to previous studies, the clinical manifestations of prenatal COC exposure seem to persist at least until adolescence. The pathophysiological cellular processes that underlie these impairments include dysfunctional myelination, disrupted dendritic architecture, and synaptic alterations. On a molecular level, various neurotransmitters such as serotonin, dopamine, catecholamines, and γ-aminobutyric acid seem to participate in this process. Finally, prenatal COC abuse has been also associated with functional changes in the hormones of the hypothalamic-pituitary-adrenal axis that mediate neuroendocrine responses. The purpose of this review is to summarize the neurodevelopmental consequences of prenatal COC abuse, to describe the pathophysiological pathways that underlie these consequences, and to provide implications for future research in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.