We report on quantum electrical characteristics of dendritic copper point contacts (PCs) formed through an electrochemical process via a new cyclic switchover effect that is demonstrated by the occurrence of steps in the time dependence of the dendritic-PCs conductance. We show that this quantization of the electrical conductance is due to an electronic shell effect governing the dendrite growth. The cyclic variations of conductance during dendritic PCs electrosynthesis offer the possibility for forming nanostructures of preassigned sizes controlled through their electrical resistance.
The diversity of techniques employed in modern sensing nanodevices is crucial for large-scale use of sensors in multifunctional technological cycles. We propose a new concept of selective detection of gases and liquids based on the formation of an original quantum system and registration of its energy states in dynamic mode using dendrite point contacts synthesized electrochemically in the probed medium. The in situ synthesis of nanosized dendrite point contacts is shaped by the cyclic switchover effect which takes place in an electrolyte in contact with the analyzed medium and results in consecutive cycles of the formation and destruction of an electrochemical gapless electrode system. Conductivity of such point contacts demonstrates quantum behavior driven by the shell effect which determines the geometry of their conducting channels. Temporal dependence of dendrite point contact electrical resistance measured in dynamic mode is characterized by a step-like structure which reflects the metastable quantum states of the system whose distribution can be presented in the form of a conductance histogram. The histogram is a unique fingerprint of the probed medium and can thus be used to unambiguously identify it. The dynamic mode scanning of the energy states of point contact quantum systems proposed here makes it possible to develop a universal method for selective detection of many gaseous and liquid media including such hard to detect substances as methane and rare gases. The new approach is expected to prove its efficiency in investigating quantum effects for various sensor applications and stimulate the development of the next generation of highly selective nanodevices. Graphical abstract The new concept of selective detection of gases and liquids is based on the registration of quantum states of nanosized dendrite point contacts synthesized in the probed medium.
State-of-the-art methods for non-invasive detection of the Helicobacter pylori (H. pylori) infection have been considered. A reported global tendency towards a non-decreasing prevalence of H. pylori worldwide could be co-influenced by the functional limitations of urea breath tests (UBTs), currently preferred for the non-invasive recognition of H. pylori in a clinical setting. Namely, the UBTs can demonstrate false-positive or false-negative results. Within this context, limitations of conventional clinically exploited H. pylori tests have been discussed to justify the existing need for the development of a new generation of breath tests for the detection of H. pylori and the differentiation of pathogenic and non-pathogenic strains of the bacterium. This paper presents the results of a pilot clinical study aimed at evaluating the development and diagnostic potential of a new method based on the detection of the non-urease products of H. pylori vital activity in exhaled gas. The characteristics of breath of adolescents with H. pylori-positive and H. pylori-negative functional dyspepsia, together with a consideration of the cytotoxin-associated gene A (CagA) status of H. pylori-positive subjects, have been determined for the first time using innovative point-contact nanosensor devices based on salts of the organic conductor tetracyanoquinodimethane (TCNQ). The clinical and diagnostic relevance of the response curves of the point-contact sensors was assessed. It was found that the recovery time of the point-contact sensors has a diagnostic value for differentiation of the H. pylori-associated peptic ulcer disease. The diagnostically significant elongation of the recovery time was even more pronounced in patients infected with CagA-positive H. pylori strains compared to the CagA-negative patients. Taking into account the operation of the point-contact sensors in the real-time mode, the obtained results are essential prerequisites for the development of a fast and portable breath test for non-invasive detection of cytotoxic CagA strains of H. pylori infection. The relaxation time of the point-contact nanosensors could be selected as a diagnostic criterion for non-invasive determination of H. pylori-associated destructive lesions of the gastroduodenal area in adolescents, using the point-contact spectroscopic concept of breath analysis. This can subsequently be implemented into a 'test-and-treat' approach for the management of uninvestigated dyspepsia in populations with a high prevalence of H. pylori (according to the Maastricht III and IV Consensus recommendations).
Point contacts have been discovered to present excellent and unprecedented characteristics when used as gas sensors. A novel concept has been tested successfully and opens the way to useful applications. Copper point contacts were investigated in gas media such as NOx, HCl, H2S and human breath. They reveal high sensitivity to these gases: the measured signal increases by 2-3 orders of magnitude upon gas exposure. Sensor parameters are fully restored when gas action ceases. Stable reproducibility of experimental results was observed after several exposure cycles onto the investigated point contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.