An evaluation of performance of the System for Integrated modeLling of Atmospheric coMposition (SILAM) in application to birch pollen dispersion is presented. The system is described in a companion paper whereas the current study evaluates the model sensitivity to details of the pollen emission module parameterisation and to the meteorological input data. The most important parameters are highlighted. The reference year considered for the analysis is 2006. It is shown that the model is capable of predicting about two-thirds of allergenic alerts, with the odds ratio exceeding 12 for the best setup. Several other statistics corroborate with these estimations. Low-pollen concentration days are also predicted correctly in more than two-thirds of cases. The model experiences certain difficulties only with intermediate pollen concentrations. It is demonstrated that the most important input parameter is the near-surface temperature, the bias of which can easily jeopardise the results. The model sensitivity to random fluctuations of temperature is much lower. Other parameters important at various stages of pollen development, release, and dispersion are precipitation and ambient humidity, as well as wind direction.
The authors describe the opportunities of low-grade sulfide ores and mine waste processing with heap and bacterial leaching methods. By the example of gold and silver ores, we analyzed specific issues and processing technologies for heap leaching intensification in severe climatic conditions. The paper presents perspectives for heap leaching of sulfide and mixed ores from the Udokan (Russia) and Talvivaara (Finland) deposits, as well as technogenic waste dumps, namely, the Allarechensky Deposit Dumps (Russia). The paper also shows the laboratory results of non-ferrous metals leaching from low-grade copper-nickel ores of the Monchepluton area, and from tailings of JSC Kola Mining and Metallurgical Company.
The paper considers the potential possibility of using sediments formed by settled suspended solids from settling ponds of the wastewater treatment system as a complex raw material. Leaching of pre-agglomerated suspensions with 2% sulfuric acid using 30% sulfuric acid as a binder in 90 days made it possible to extract 36% of copper and 55.7% of nickel. The sorption properties of fired granules made with the use of sulfite-alcohol stillage as a binder in relation to copper and nickel ions have been demonstrated. In the first few days of the experiment, it was possible to adsorb 68-73% nickel and 90-92% copper from the model solution supplied to the percolator. The possibility of obtaining a brucite-containing sorbent by hydrochloric acid opening of the initial material of suspensions and its use for purifying model solutions from fluorine ions with an efficiency of up to 62% is shown.
Processes of surface and underground water forming in the Khibiny massif have been studied using a physical-chemical model of the "water-rock-atmosphere-organic substance" system. The obtained model solutions are indicative of the fact that formation of surface and underground water of the Khibiny massif takes place on the whole in the framework of the considered system without attracting a hypothetical outside source of pollutants. The results are of practical and methodological importance for assessment of prediction of the man-induced impact on water systems in conditions of Subarctic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.