Manufacturing companies of electronic control systems of diesel engines protect access to a program operation algorithm of the regulator that makes impossible adjustments and settings of its work, for example, at re-equipment or operational development of a new diesel engine. Therefore, it is important to acknowledge the solution of the scientific and technical problem of an effective and reliable system creation of electronic control of diesel fuel supply with an open program algorithm of its work. During the current research, settlement and experimental studies of a diesel engine supplied with a system of electronic control of a crankshaft rotation frequency developed by the authors show rather high adequacy in results. The dynamic mathematical model of the single-cylinder diesel engine supplied with the electronic regulator of rotation frequency has been developed and verified.
The results of computational studies of the heat-stressed state of a cylinder sleeve of high-speed diesel have been presented. The research solves the problems of analyzing the influence of known constructive means, their combinations on the heatstressed state of the working surface of the sleeves. Optimization of the temperature of the state of the sleeve involves obtaining such a temperature profile along the working surface of the sleeve, which would provide the minimum friction costs, which in turn depends on the viscosity of the engine oil on the working surface of the sleeve. A mathematical model based on the finite element method is used.
The article demonstrates a rational scheme of the supercharging system in a helicopter diesel engine with a power of 100 kW, regardless of the flight altitude, and proposes a method for assessing the power losses for a diesel engine depending on the flight altitude using a mathematical model. There are three variants of an engine supercharger scheme with a single-stage turbocharger, a two-stage one with parallel or sequential compressor drive and a turbo-blower. As a result of the computational analysis according to the original method, it was shown that from the point of view of the least energy consumption two-stage scheme with a compressor and a sequential drive is the most rational. To reduce energy losses in the drive with two-stage supercharging, a concept for controlling the pressure system was proposed, which includes changing the rotational speed of the compressor drive and adjusting the throttles. Simulation of the engines running during the climb / descent of the helicopter showed that the proposed pressure scheme and control concept is effective. In order to improve the quality of regulation, the possibility to use an electric drive with the first stage compressor is being considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.