Аннотация. Обсуждаются задачи построения лорановых и регулярных решений линейных обыкновенных дифференциальных уравнений. Предполагается, что коэффициентами уравнений являются формальные степенные ряды, которые заданы в виде их усечений, то есть в виде начальных отрезков рядов, и что степень этих начальных отрезков может быть различна. Рассматриваемые виды решений также содержат степенные ряды. Интересует нахождение максимально возможного числа коэффициентов этих рядов в решениях, таких что они являются инвариантными относительно различных возможных продлений усечений рядов-коэффициентов заданного уравнения. В настоящей статье дается беглый обзор алгоритмов для решения такой задачи и представляется реализация этих алгоритмов в виде Maple-процедур. Рассматриваются линейные обыкновенные дифференциальные уравнения с бесконечными (формальными) степенными рядами в роли коэффициентов, при этом эти ряды задаются в усеченном виде. Предлагаются компьютерно-алгебраические процедуры (они реализованы в среде Maple) построения решений двух видов. Эти решения содержат, в свою очередь, степенные ряды. Исходя из заданных усеченных рядов-коэффициентов уравнения, процедуры находят максимально возможное число членов рядов, входящих в решения. Ключевые слова: усеченные степенные ряды; линейные обыкновенные дифференциальные уравнения; лорановы решения; регулярные решения; компьютерная алгебра; Maple
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.