The production of over 800 1.3-GHz superconducting (SC) cavities for the European X-ray Free Electron Laser (EXFEL), the largest in the history of cavity fabrication, has now been successfully completed. In the past, manufacturing of SC resonators was only partly industrialized; the main challenge for the EXFEL production was transferring the high-performance surface treatment to industry. The production was shared by the two companies RI Research Instruments GmbH (RI) and Ettore Zanon S.p.A. (EZ) on the principle of "build to print". DESY provided the high-purity niobium and NbTi for the resonators. Conformity with the European Pressure Equipment Directive (PED) was developed together with the contracted notified body TUEV NORD. New or upgraded infrastructure has been established at both companies. Series production and delivery of fully-equipped cavities ready for cold rf testing was started in December 2012, and finished in December 2015. More than half the cavities delivered to DESY as specified (referred to "as received") fulfilled the EXFEL specification. Further improvement of low-performing cavities was achieved by supplementary surface treatment at DESY or at the companies. The final achieved average gradient exceeded the EXFEL specification by approximately 25%. In the following paper, experience with the 1.3-GHz cavity production for EXFEL is reported and the main lessons learned are discussed.
The burning of compacted modified propellant charges applied as a traveling charge in the hybrid shot scheme was studied. The block charges were manufactured by pressing fine propellant grains coated by a thin film of polyvinyl butyral. A stick from several pressed pellets was insulated over its lateral surface by a thin layer of silicon paste, glued to the back of the projectile and inserted into the barrel of the 23‐mm smooth‐bore laboratory gun. The loose‐packed accelerator charge was placed in the breech. Combustion was initiated by an igniter plug placed between the traveling and breech charges. A set of piezo‐quartz gauges placed in the breech and along the barrel, as well as a frame‐target device were used for recording characteristics of the firings. It is shown that blocks of this type, applied as the traveling charge, provide a stable burning process resulting in high ballistic performance. The block traveling charge preserves its integrity in the course of its motion along the barrel, and burning envelopes its total mass when pressure in the breach passes the maximum value. The descending portion of the pressure diagram demonstrates appreciable transformation, with convex or secondary hump sections. The shape of spatial pressure profiles behind the moving projectile is also transformed, and the pressure at the projectile butt end may be higher than the pressure in the breech. Compared to the conventional charges at the same maximum pressures the muzzle velocity increment attains 340 m s−1 (or 23 %) for a light 35‐g projectile and 200 m s−1 (or 19 %) for a heavy 104‐g projectile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.