Evaporation of iron nanoparticles in carbon shells under pulsed laser irradiation is analyzed. Iron–carbon nanoparticles are synthesized in a shock tube reactor with the aid of pyrolysis of the 0.25% Fe(CO)_5 + 0.25% C_6H_6 mixture in argon. Laser radiation is used for additional heating to temperatures that exceed the evaporation threshold of the iron core of nanoparticles. Time profiles of the thermal radiation of laser-heated nanoparticles are measured. The two-color pyrometry is used to determine the evaporation temperature of nanoparticles, and the laser extinction makes it possible to monitor the loss of volume fraction of the condensed phase upon evaporation. Approximation of experimental signals of laser-heated nanoparticles using model curves is employed to determine effective enthalpy of evaporation of iron–carbon nanoparticles. It is shown that the iron core of nanoparticles is evaporated through the carbon shell and the energy spent by such a process is approximately twice greater than the evaporation enthalpy of bulk iron with free surface.
In this paper, the dependence of the sublimation temperature of soot particles synthesized during the combustion of various hydrocarbons, depending on their size and structure, is obtained. The experimental approach is based on the analysis of the thermal radiation of particles heated to the sublimation temperature by a nanosecond laser pulse. The sublimation temperature of soot particles was measured using the two-color pyrometry method. In this paper, it is proposed to use the average size of primary particles to compare data in different flames. It is established, that the sublimation temperature of soot particles depends mainly on the stage of their formation, which is characterized by an increase in average size. It is shown, that with an increase in the average particle size from 12 to 23 nm, their sublimation temperature increases significantly from 2700 to 4500 K. This reflects a significant difference in the thermodynamic and optical properties of the so-called "young" and "mature" soot particles, which must be taken into account when developing methods of soot diagnostics and in the thermo-physical analysis of combustion and pyrolysis processes with the formation of soot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.