Evaporation of iron nanoparticles in carbon shells under pulsed laser irradiation is analyzed. Iron–carbon nanoparticles are synthesized in a shock tube reactor with the aid of pyrolysis of the 0.25% Fe(CO)_5 + 0.25% C_6H_6 mixture in argon. Laser radiation is used for additional heating to temperatures that exceed the evaporation threshold of the iron core of nanoparticles. Time profiles of the thermal radiation of laser-heated nanoparticles are measured. The two-color pyrometry is used to determine the evaporation temperature of nanoparticles, and the laser extinction makes it possible to monitor the loss of volume fraction of the condensed phase upon evaporation. Approximation of experimental signals of laser-heated nanoparticles using model curves is employed to determine effective enthalpy of evaporation of iron–carbon nanoparticles. It is shown that the iron core of nanoparticles is evaporated through the carbon shell and the energy spent by such a process is approximately twice greater than the evaporation enthalpy of bulk iron with free surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.