The peculiarities of resistive switching in capacitors with yttria-stabilized hafnia layers were studied. The characteristics of current transport in the initial state and after electroforming and resistive switching at different temperatures were examined. The parameters of a small-signal equivalent circuit of a capacitor were determined for switching into low- and high-resistance states. These parameters suggest that the resistance of filaments changes after each successive switching. This provides an opportunity to use such measurements to determine the nature of resistive switching and verify the reproducibility of its parameters. The contribution of electron traps to switching was revealed. Ion migration polarization was observed at temperatures above 500 K, and the activation energy of ion migration and the ion concentration were determined. The effect of resistive switching under the influence of temperature was observed and interpreted for the first time.
The self-assembled GeSi nanoislands built into the semiconductor-insulator interface of the MOS-structures based on Si(001) with SiOx and ZrO2(Y) oxide layers deposited by magnetron sputtering have been shown to initiate bipolar resistive switching without preliminary electroforming. The current-voltage curves and electrical parameters of the MOS-structures in the high-resistance state and in the low-resistance state have been studied. A change in the built-in charge in the dielectric near the insulator-semiconductor interface during resistive switching is established and associated with the formation and destruction of conductive filaments. The light-stimulated resistive switching of MOS-structures with ZrO2(Y) layer from the high-resistance to the low-resistance state is observed, which is associated with an increase in the conductivity of the space-charge region in the Si substrate due to interband optical absorption in Si, which causes a voltage redistribution between Si and ZrO2(Y) layer. A difference in the shape of the small signal photo-voltage spectra of MOS-structures is found in the spectral region of intrinsic photosensitivity of Si in the high and low resistance states due to the leakage of photo-excited charge carriers from Si to the metal electrode through filaments.
The electrophysical characteristics of multilayer memristive structure Au/Ta/ZrO2(Y)/TaOx/TiN have been studied. The effects of electron and ion electrification associated with carrier trapping on traps and ion migration polarization in a dielectric are found. The effect of traps located in dielectrics on the effects of electroforming and resistive switching is established. The values of activation energy and concentrations for traps and ions are determined. The phenomenon of stabilization of resistive switching, which is associated with the features of the two-layer structure of YSZ/TaOx and self-assembled Ta nanoclusters, is found. Nanoclusters play the role of electric field concentrators in the process of electroforming and subsequent resistive switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.