Lithium nickelate (LiNiO2) and materials based on it are attractive positive electrode materials for lithium-ion batteries, owing to their large capacity. In this paper, the results of atomic layer deposition (ALD) of lithium–nickel–silicon oxide thin films using lithium hexamethyldisilazide (LiHMDS) and bis(cyclopentadienyl) nickel (II) (NiCp2) as precursors and remote oxygen plasma as a counter-reagent are reported. Two approaches were studied: ALD using supercycles and ALD of the multilayered structure of lithium oxide, lithium nickel oxide, and nickel oxides followed by annealing. The prepared films were studied by scanning electron microscopy, spectral ellipsometry, X-ray diffraction, X-ray reflectivity, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and selected-area electron diffraction. The pulse ratio of LiHMDS/Ni(Cp)2 precursors in one supercycle ranged from 1/1 to 1/10. Silicon was observed in the deposited films, and after annealing, crystalline Li2SiO3 and Li2Si2O5 were formed at 800 °C. Annealing of the multilayered sample caused the partial formation of LiNiO2. The obtained cathode materials possessed electrochemical activity comparable with the results for other thin-film cathodes.
The observed downsizing tendency of microelectronic devices leads to a higher demand in new types of miniaturized energy sources. Thin‐film Li‐ion batteries (LiBs) are promising candidates to fulfil this function. New materials and technologies should be investigated for customized production of miniaturized, high‐efficient solid‐state batteries. Herein, inkjet printing technology is considered as a promising one for the fabrication of LiBs. The modification of crystalline lattice of Li‐rich cathode material by aluminium, sodium, and potassium and their influence on power efficiency are studied in detail. Lithium‐manganese‐rich compounds are chosen as the most suitable composition of an active component for LiBs fabrication. The stable aqueous colloidal ink composition is synthesized and its rheological parameters are optimized for inkjet printing in terms of viscosity, surface tension, and contact angle. Protocols for inkjet printing for the fabrication of thin‐film cathodes with the thickness of less than 10 μm are reported. The good correlation of electrochemical properties such as average voltage, capacity, and energy between inkjet printed and conventionally fabricated electrodes confirms the feasibility of the suggested technological approach and selected cathode material composition.
A study of the electrochemical characteristics of titanium oxyfluoride obtained with the direct interaction of titanium with hydrofluoric acid is reported. Two materials T1 and T2 synthesized under different conditions in which some TiF3 is formed in T1 are compared. Both materials exhibit conversion-type anode properties. Based on the analysis of the charge–discharge curves of the half-cell, a model is proposed according to which the first electrochemical introduction of lithium occurs in two stages: the first stage is the irreversible reaction resulting in a reduction in Ti4+/3+, and the second stage is the reversible reaction with a change in the charge state Ti3+/1.5+. The difference in material behavior is quantitative: T1 has a higher reversible capacity but lower cycling stability and a slightly higher operating voltage. The Li diffusion coefficient determined from the CVA data for both materials averages 1.2–3.0 × 10−14 cm2/s. A distinctive feature of titanium oxyfluoride anodes is the asymmetry in kinetic characteristics that revealed themselves during lithium embedding and extraction. In the long cycling regime, the excess of Coulomb efficiency over 100% was found in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.