The data in this article are related to the research article entitled “Optimization of melting analysis with TaqMan probes for detection of KRAS, NRAS, and BRAF mutations” Botezatu et al. [1]. Somatic mutations in the PIK3CA gene (“hot spots” in exons 9 and 20) are found in many human cancers, and their presence can determine prognosis and a treatment strategy. An effective method of mutation scanning PIK3CA in clinical laboratories is DNA Melting Analysis (DMA) (Vorkas et al., 2010; Simi et al., 2008) [2], [3]. It was demonstrated recently that the TaqMan probes which have been long used in Real Time PCR may also be utilized in DMA (Huang et al., 2011) [4]. After optimization of this method Botezatu et al. [1], it was used for multiplex scanning PIK3CA hotspot mutations in formalin-fixed paraffin-embedded (FFPE) samples from patients with colorectal and lung cancer.
Asymmetric PCR and DNA melting analysis with TaqMan probes applied for mutation detection is effectively used in clinical diagnostics. The method is simple, cost-effective, and carried out in a closed-tube format, minimizing time, labor, and risk of sample cross-contamination. Although DNA melting analysis is more sensitive than Sanger sequencing (mutation detection thresholds are ~5% and 15%-20%, respectively), it is less sensitive than more labor-intensive and expensive techniques such as pyrosequencing and droplet digital PCR. Here, we demonstrate that, under specially selected conditions of asymmetric PCR, TaqMan probes can play the role of blocking agents. Preferential blocking of the wild-type allele brings about enriched amplification of mutant alleles. As a result, an ~10-fold increase in the detection sensitivity for mutant and genes was achieved.
Increased MYCN gene copy number is a characteristic property of neurogenic tumors. Fluorescence in situ hybridization (FISH) and array-based comparative genomic hybridization (array-CGH) are traditionally used to determine MYCN amplification for tumor stratification. A unique ability of real-time quantitative polymerase chain reaction (qPCR) to determine gene copy number, even within a small percent of observed tumor cells, and can be more appropriate. MYCN genomic copy number from 44 human brain tumors (22 medulloblastomas and 22 neurocytomas) was determined by means of FISH, array-CGH, and qPCR. By qPCR, with the original set of oligonucleotides, 17 out of 44 (38.6%) tumors were found to contain a 1.3- to 2.9-fold increase of MYCN defined as low-level gain. An absolute qPCR method was used to get high accuracy of results. Strong correlation was observed between the three methods: for medulloblastomas, r=1 (P<0.01) between FISH and array-CGH and r=0.92 (P<0.01) between qPCR and FISH/array-CGH. For neurocytomas, r=0.9 (P<0.01) between FISH and array-CGH and r=0.34/0.43 (P<0.01) between qPCR and FISH/array-CGH. Absolute qPCR assays possess high precision compared to other conventional methods and can be used for accurate and quickness detection of MYCN status (low-level gene gain and amplification).
The treatment of patients with advanced non-small-cell lung cancer (NSCLC) in recent years has been increasingly guided by biomarker testing. Testing has centered on driver genetic alterations involving the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) rearrangements. The presence of these mutations is predictive of response to targeted therapies such as EGFR tyrosine kinase inhibitors (TKIs) and ALK TKIs. However, there are substantial challenges for the implementation of biomarker testing, particularly in emerging countries. Understanding the barriers to testing in NSCLC will be key to improving molecular testing rates worldwide and patient outcomes as a result. In this article, we review EGFR mutations and ALK rearrangements as predictive biomarkers for NSCLC, discuss a selection of appropriate tests and review the literature with respect to the global uptake of EGFR and ALK testing. To help improve testing rates and unify procedures, we review our experiences with biomarker testing in China, South Korea, Russia, Turkey, Brazil, Argentina and Mexico, and propose a set of recommendations that pathologists from emerging countries can apply to assist with the diagnosis of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.