The formation of nanoassemblies of CdSe/ZnS quantum dots (QD) and pyridyl-substituted free-base porphyrin (H(2)P) molecules has been spectroscopically identified by static and time-resolved techniques. The formation of nanoassemblies has been engineered by controlling the type and geometry of the H(2)P molecules. Pyridyl functionalization gives rise to a strong complex formation accompanied by QD photoluminescence (PL) quenching. For some of the systems, this quenching is partly related to fluorescence resonance energy transfer (FRET) from the QD to H(2)P and can be explained according to the Förster model. The quantitative interpretation of PL quenching due to complexation reveals that (i) on average only about (1)/(5) of the H(2)P molecules at a given H(2)P/QD molar ratio are assembled on the QD and (ii) only a limited number of "vacancies" accessible for H(2)P attachment exist on the QD surface.
Hetero-nanoassemblies in toluene solution are formed via anchoring pyridyl substituted free base porphyrin molecules on the colloidal core-shell semiconductor nanocrystals CdSe/ZnS. The formation can be identified via quenching of semiconductor photoluminescence and followed via spectral changes of porphyrin spectral properties such as fluorescence, fluorescence decay and absorption. Interpreting these changes we estimate that even at high molar ratios on average only one molecule is anchored on one nanocrystal. Experimentally determined complexation constants are comparable to those observed for multi-porphyrin complexes. r
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.