Objective-To study whether an injury-induced inflammation might be the mechanism underlying the favorable effect of endometrial biopsy on the implantation rate in in vitro fertilization (IVF) patients.
Design-Controlled clinical study.Setting-A medical center IVF unit and a research institute.
Patient(s)-Women undergoing IVF who had previous failed treatment cycles.Intervention(s)-Endometrial samples were collected from two groups of patients on day 21 of their spontaneous menstrual cycle. The experimental, but not the control group underwent prior biopsy treatment on days 8 or/and 11 to 13 of that same cycle.Main Outcome Measure(s)-Abundance of immune cells, cytokines/chemokines level, correlation between these parameters and pregnancy outcome.Result(s)-A statistically significantly higher amount of macrophages/dendritic cells (HLA-DR + CD11c + cells) and elevated proinflammatory cytokines, tumor necrosis factor-α (TNF-α), growthregulated oncogene-α (GRO-α), interleukin-15 (IL-15), and macrophage inflammatory protein 1B (MIP-1B), were detected in day-21 endome-trial samples of the experimental group. A direct stimulatory effect of TNF-α on MIP-1B, GRO-α, and IL-15 messenger RNA (mRNA) expression was demonstrated. A positive correlation was found between the levels of macrophages/dendritic cells, MIP-1B expression, and TNF-α expression and the pregnancy outcome.
Conclusion(s)-A biopsy-induced inflammatory response may facilitate the preparation of the endometrium for implantation. Increased MIP-1B expression could possibly serve for prediction of implantation competence.
A decade ago, we first reported that endometrial biopsy significantly improves the success of pregnancy in IVF patients with recurrent implantation failure, an observation that was later confirmed by others. Recently, we have demonstrated that this treatment elevated the levels of endometrial pro-inflammatory cytokines and increased the abundance of macrophages (Mac) and dendritic cells (DCs). We therefore hypothesised that the biopsy-related successful pregnancy is secondary to an inflammatory response, and aimed at deciphering its mechanism of action. Supporting our hypothesis, we found that the pro-inflammatory TNFa stimulated primary endometrial stromal cells to express cytokines that attracted monocytes and induced their differentiation into DCs. These monocytederived DCs stimulated endometrial epithelial cells to express the adhesive molecule SPP1 (osteopontin (OPN)) and its receptors ITGB3 and CD44, whereas MUC16, which interferes with adhesion, was downregulated. Other implantation-associated genes, such as CHST2, CCL4 (MIP1B) and GROA, were upregulated by monocyte-derived Mac. These findings suggest that uterine receptivity is mediated by the expression of molecules associated with inflammation. Such an inflammatory milieu is not generated in some IVF patients with recurrent implantation failure in the absence of local injury provoked by the biopsy treatment.Reproduction (2015) 149 75-85
The coordinated function of the different compartments of the follicle, the oocyte and the somatic cumulus/granulosa cells, is enabled by the presence of a network of cell-to-cell communication generated by gap junctions. Connexin 43 (Cx43) is the most abundant gap junction protein expressed by the ovarian follicle. The expression of Cx43 is subjected to the control of gonadotropins as follows: FSH up-regulates, whereas LH down-regulates its levels. The aim of this study was to explore the mechanism by which LH reduces the levels of Cx43 and to identify the signal transduction pathway involved in this process. The effect of LH was studied in vitro using isolated intact ovarian follicles. The possible mediators of LH-induced Cx43 down-regulation were examined by incubating the follicles with LH in the presence or absence of inhibitors of protein kinase A (PKA) and of MAPK signaling pathways. Our experiments revealed a 3-h half-life of Cx43 in both control and LH-treated follicles, suggesting that LH did not affect the rate of Cx43 degradation. We further demonstrated that the level of Cx43 mRNA was not significantly influenced by this gonadotropin. However, upon LH administration, [(35)S]methionine incorporation into Cx43 protein was remarkably reduced. The LH-induced arrest of Cx43 synthesis was counteracted by inhibitors of both the PKA and the MAPK cascades. We show herein that LH inhibits Cx43 expression by reducing its rate of translation and that this effect is mediated by both PKA and MAPK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.