Analysis of the noncovalent, noncooperative self-association of identical aromatic molecules assumes that the equilibrium self-association constants are either independent of the number of molecules (the EK-model) or change progressively with increasing aggregation (the AK-model). The dependence of the self-association constant on the number of molecules in the aggregate (i.e., the profile of the equilibrium constant) was empirically derived in the AK-model but, in order to provide some physical understanding of the profile, it is proposed that the sources for attenuation of the equilibrium constant are the loss of translational and rotational degrees of freedom, the ordering of molecules in the aggregates and the electrostatic contribution (for charged units). Expressions are derived for the profiles of the equilibrium constants for both neutral and charged molecules. Although the EK-model has been widely used in the analysis of experimental data, it is shown in this work that the derived equilibrium constant, K(EK), depends on the concentration range used and hence, on the experimental method employed. The relationship has also been demonstrated between the equilibrium constant K(EK) and the real dimerization constant, K(D), which shows that the value of K(EK) is always lower than K(D).
The hydrophobic component of complexation energy of double-stranded DNA with biologically active aromatic compounds was calculated using two semi-empirical methods – correlations of hydrophobic energy with changes of a heat capacity (DCp) and solvent-accessible surface area (SASA). These surface areas were calculated for free ligands and DNA oligomers, unwound DNA duplexes and DNA-ligand complexes. The changes of polar and non-polar SASAs of molecules upon binding ligands to DNA were found. The hydrophobic contribution at both complexation stages were calculated. It was shown that the calculation of hydrophobic energy by SASA method is more correct than (DCp) method for DNA-binding ligands
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.