The arrays of permalloy micron-sized particles with configurational anisotropy of shape was made by microsphere lithography technique. The properties of the particles were studied by atomic-force microscopy and magnetic-force microscopy. The magnetization distribution in particles was studied depending on the size of microspheres used in lithography process. The computer simulation of magnetic-force images of the particles was carried out. The quantitative and qualitative comparisons of shapes, sizes and reproducibility of particles fabricated by microsphere lithography and scanning probe lithography was performed.
There is presented results studying of changes of the domain structure of a planar square microparticle with dimensions 7.5 × 7.5 × 0.04 μm under uniaxial mechanical stress. Microparticles were made from following materials: permalloy (18% Fe, 82% Ni), permendur (50% Co, 50% Fe), halfenol (16% Ga, 84% Fe), Ni, terfenol (Tb0.3Dy0.7Fe1.92). It was concluded about promising of using these materials for creating microsensors of mechanical stress and for creating straintronic devices for processing and storing information.
Методами магнитно-силовой микроскопии были исследованы магнитные свойства (поле переключения) и переходы из многодоменного в однодоменное состояние планарных микрочастиц Co18Ni82 размером 7.5x7.5x0.03 μm3 при различных температурах. Использование в качестве подложки гексагонального монокристалла ниобата лития, обладающего отличающимися температурными коэффициентами линейного расширения вдоль разных кристаллографических осей, позволило индуцировать одноосные механические напряжения в микрочастицах путем относительно небольшого нагрева или охлаждения образца по сравнению с его температурой напыления. Показано, что за счет термоиндуцированного магнитоупругого эффекта увеличение температуры всего на 50 K может привести к семикратному уменьшению величины поля переключения. Ключевые слова: магнитоупругий эффект, магнитная силовая микроскопия, перемагничивание, ниобат лития, температура.
Results of studying the domain structure of planar Ni microparticles formed on single-crystal substrates from the lithium niobate and from the potassium titanyl phosphate at different temperatures are presented. The dependence of domain sizes on the sample temperature was studied. It is shown the observed change of the domain structure is caused by the magnetoelastic effect, which arises due to the difference in the thermal expansion coefficients of the substrate and microparticles as the sample temperature changes. It is shown, the sizes of magnetic domains, up to the creation of a state with a quasi-homogeneous magnetization may be set by the substrate temperature during the microparticles formation.
The possibility of precise movement of YVO4:Yb,Er nanoparticles was studied in this work. Such nanoparticles exhibit upconversion luminescent properties and can serve as an accurate low-invasive probe of changes in the local parameters of the medium (in particular, temperature). Using an atomic force microscope, the substrate region with upconversion nanoparticles deposited from the solution and accompanying residues of the synthesis products was cleaned. The use of mechanical marks on the substrate made it possible to compare the atomic force and optical confocal images of the surface and to register the luminescence from an individual nanoparticle. Elemental analysis and luminescence spectra unambiguously identify the nanoparticle as YVO4:Yb,Er.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.