The possibility of precise movement of YVO4:Yb,Er nanoparticles was studied in this work. Such nanoparticles exhibit upconversion luminescent properties and can serve as an accurate low-invasive probe of changes in the local parameters of the medium (in particular, temperature). Using an atomic force microscope, the substrate region with upconversion nanoparticles deposited from the solution and accompanying residues of the synthesis products was cleaned. The use of mechanical marks on the substrate made it possible to compare the atomic force and optical confocal images of the surface and to register the luminescence from an individual nanoparticle. Elemental analysis and luminescence spectra unambiguously identify the nanoparticle as YVO4:Yb,Er.
The experimental results of the formation of polymer masks for the creation of planar microparticles of a given shape by scanning probe lithography are presented. The problems associated with the nonlinearity of the probe movement during the mask formation are considered. The possibility of increasing the lifetime of the probe by changing the mask formation procedure and (or) changing the sample temperature has been demonstrated. Improving the quality of the resulting mask is achieved through the use of chemical etching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.