explained by both unapproved deviations from the design project made by a subcontractor during construction and low-quality construction and assembly work. It is strongly suggested to improve the structural solution of edge zones in envelopes to reduce thermotechnical risks when designing buildings. Supplementary insulation along the surfaces of the walls can be considered as another activity to increase heat protection.
The article presents information on a test experiment for the construction of masonry fragments made of autoclaved cellular concrete products (ААС blocks) on the polyurethane adhesive and the ensuing structural, thermal and technological tests of this type of masonry in specialized laboratories and testing facilities. It is shown that the use of polyurethane foam adhesive to bond the concrete blocks in the masonry walls is technically and economically feasible. On the basis of the tests it was concluded that the laying of concrete blocks on the polyurethane adhesive may be used in the construction of non-load bearing interior and exterior walls of buildings, including the filling of the external frame openings of monolithic buildings with floor bearing of the masonry on load bearing monolithic floors (with appropriate justification of the settlement)
In this article the physical principles which explain divergences of calculated and experimental values of thermal streams and temperatures of building envelope are considered. In this work the simplest thermal conduction through building envelope is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.