The recently rediscovered meningeal lymphatic system (MLS) opens new insight into pathways of brain clearing and drainage functions that play an important role in neurorehabilitation. The development of breakthrough strategies for augmentation of MLS might be a promising therapeutic target for preventing of neurological diseases. Here we demonstrate photostimulation (PS, 1268 nm) of clearing and drainage function of MLS in healthy male mice. We uncover PS‐mediated increase of the mesenteric lymphatic permeability to fluorescent macrophages via a decrease of expression of tight junction and transendothelial resistance. In sum, our results clearly show PS stimulation of meningeal clearing and drainage functions as well as effects of PS on permeability of the lymphatic endothelium to macrophages. These findings open new strategies for alternative nonpharmacological therapy of brain diseases via PS modulation of lymphatic mechanisms of the homeostasis of central nervous system.
A blue calcium phosphate cement with optimal self-hardening properties was synthesized by doping whitlockite (β-TCP) with copper ions. The mechanism and the kinetics of the cement solidification process were studied using energy dispersive X-ray diffraction and it was found out that hardening was accompanied by the phase transition from TCP to brushite. Reduced lattice parameters in all crystallographic directions resulting from the rather low (1:180) substitution rate of copper for calcium was consistent with the higher ionic radius of the latter. The lower cationic hydration resulting from the partial Ca→Cu substitution facilitated the release of constitutive hydroxyls and lowered the energy of formation of TCP from the apatite precursor at elevated temperatures. Addition of copper thus effectively inhibited the formation of apatite as the secondary phase. The copper-doped cement exhibited an antibacterial effect, though exclusively against gram-negative bacteria, including E. coli, P. aeruginosa and S. enteritidis. This antibacterial effect was due to copper ions, as demonstrated by an almost negligible antibacterial effect of the pure, copper-free cement. Also, the antibacterial activity of the copper-containing cement was significantly higher than that of its precursor powder. Since there was no significant difference between the kinetics of the release of copper from the precursor TCP powder and from the final, brushite phase of the hardened cement, this has suggested that the antibacterial effect was not solely due to copper ions, but due to the synergy between cationic copper and a particular phase and aggregation state of calcium phosphate. Though inhibitory to bacteria, the copper-doped cement increased the viability of human glial E297 cells, murine osteoblastic K7M2 cells and especially human primary lung fibroblasts. That this effect was also due to copper ions was evidenced by the null effect on viability increase exhibited by the copper-free cements. The difference in the mechanism of protection of dehydratases in prokaryotes and eukaryotes was used as a rationale for explaining the hereby evidenced selectivity in biological response. It presents the basis for the consideration of copper as a dually effective ion when synergized with calcium phosphates: toxic for bacteria and beneficial for the healthy cells.
We recently isolated and characterized a human milk peptide, lactaptin, which induced apoptosis of cultured human MCF-7 cells. Lactaptin was identified as a proteolytic fragment of human kappa-casein. Here, we generated two recombinant analogs of the peptide, RL1 and RL2, containing truncated and complete amino acid sequences of lactaptin, respectively. Analogs were produced in E.coli, purified and assayed for biological activity on cultured human MCF-7 cells. RL1 was shown to induce only a small decrease in cell viability, whereas RL2 lowered the viability of MCF-7 cells by 60%. This reduction in MCF-7 cell viability was associated with apoptosis, which was indicated by phosphatidilserine externalization and caspase-7 activation. The viability of A549 and Hep-2 cells was also reduced by RL2, albeit to a lesser degree than seen with MCF-7 cells; this reduced viability was not accompanied by apoptosis. Non-malignant human mesenchymal stem cells (MSC) were completely resistant to RL2 action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.