The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.
Although the effect of pollution on forest health and decline received much attention in the 1980s, it has not been considered to explain the ‘Divergence Problem’ in dendroclimatology; a decoupling of tree growth from rising air temperatures since the 1970s. Here we use physical and biogeochemical measurements of hundreds of living and dead conifers to reconstruct the impact of heavy industrialisation around Norilsk in northern Siberia. Moreover, we develop a forward model with surface irradiance forcing to quantify long‐distance effects of anthropogenic emissions on the functioning and productivity of Siberia’s taiga. Downwind from the world’s most polluted Arctic region, tree mortality rates of up to 100% have destroyed 24,000 km2 boreal forest since the 1960s, coincident with dramatic increases in atmospheric sulphur, copper, and nickel concentrations. In addition to regional ecosystem devastation, we demonstrate how ‘Arctic Dimming’ can explain the circumpolar ‘Divergence Problem’, and discuss implications on the terrestrial carbon cycle.
The quantitative and functional responses of soil microbial cenoses in the forest tundra zone to pollution have been studied in the area exposed to emissions from the Norilsk Mining and Metallurgical Works. The strongest structural and functional disturbances of the soil biota have been recorded on the plots with completely destroyed vegetation. A decrease in the content of microbial carbon and an elevated respira tion rate in the technogenically transformed soils provide evidence for the functioning of the microbial com munities under stress caused by the continuous input of aggressive pollutants. The degree of transformation and the contents of technogenic elements (Ni, Cu, Co, Pb, and S) in the organic horizons of the forest tun dra soils are the major factors affecting the development and functioning of the soil microbial cenoses.
This article addresses some problems connected with the assessment of biodiversity in the area of Olimpiada Mining and Processing Plant, Polyus Krasnoyarsk. The outcome of two years-long (2018–2019) integrated monitoring of natural and manmade eco-systems is presented. The main landscape types are identified using satellite images and route observation data. The structure of habitat on the natural landscape and in the disturbed areas is estimated, with identification of: the sites with pronounced environmental impact of mining (overburden and waste rock dumps and slopes, manmade water reservoirs and banks); abandoned or reclaimed manmade objects; urban territory of the miners settlement; control (baseline) sites (pyrogenic-nature and primary forest, valley and flood-plain planting). It is emphasized that the soil cover and the thermal background in the test territory has been essentially transformed, which can greatly affect local biodiversity. Inspection of the natural and manmade eco-systems in the area of Olimpiada MPP has revealed 177 species of plants, including 153 species of higher vascular plants, 14 species of mosses and 10 species of lichens. The flora of vascular plants represents 46 families and 112 kinds. The species resistant to anthropogenic transformation are identified. The fauna biodiversity is represented by 34 species of mammals (Mammalia) from 5 orders (insect-eating, rodents, carnivores, cloven-footed and wing-handed animals) as well as by 110 species of birds Aves). The marker species are specified for monitoring of small mammals and birds in the test region. The research findings point at the required monitoring of biodiversity both in the territory of the mining and processing plant and in the adjacent undisturbed baseline area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.