The authors examine the specific features of the digital environment to analyze contemporary approaches to the system of instruments of studying illegal actions in cyberspace. They state that law enforcement bodies should adapt key characteristics of the digital environment to the accomplishment of investigation tasks. The authors analyze the possibilities offered by digital profiling and modeling of the digital profile (portrait) of an unidentified criminal through mathematical methods of modeling and prediction in investigating and solving serial crimes, including cybercrimes. An extensive review of Russian and foreign publications is used to study the evolution of scientific ideas regarding the profiling method, which is the basis for the digital profiling of the behavioral model of an unidentified criminal in the digital environment. It is stated that none of the branches of criminal law, including criminology and criminalistics, could alone solve the interdisciplinary problem of the investigation and detection of crimes in the digital environment. The authors prove that it is necessary to integrate the knowledge of these branches and to conduct interdisciplinary research involving experts, i.e. to duly streamline the organization of those activities that together make up the investigation and detection of crimes. Based on the content of the concept «modus operandi», which lies at the heart of building an abstract model of criminal behavior, they conclude that it could be used to investigate and solve crimes in the digital environment and determine the specific features of the content of its structural elements. The comparative analysis of the contents of the key stages of profiling is used to prove the expediency of employing the whole range of logical and mathematical methods of analysis to process and analyze criminological information, which leads to the necessity of both critically reviewing them and finding ways to go beyond the traditional approaches. The authors describe the essence of the mathematical extrapolation method, which is most commonly used in criminology for the quantitative analysis of knowledge regarding objects, phenomena, processes, as well as the possibility of using it in digital profiling. As a result of this research based on the systemic approach, the authors state the objective character of links between the traditional and the digital profiling, point out the existing links and regularities, which allow them to reduce the essence of the examined phenomena to building a model through the recreation, in the process of investigation, of the mental trace pattern and then using it to find the guilty person.
The authors have analyzed crimes connected with the use of virtual currency in the regional and international aspects. They introduce a new category of «cryptocrime» understood as the aggregate of publically dangerous acts, united by their common systemic characteristics, committed against or using the products of distributed registries (cryptocurrency, tokens and other forms of digital financial assets). They analyze each of the cryptocrime segments separately: illegal trade in psychoactive substances (narcotics, psychoactive substances, precursors), pornography and other prohibited content (including illegal services); laundering of criminal proceeds; theft of cryptocurrency and tokens. Using the scientific research methods (comparative, sociological, statistical analysis and extrapolation of data, building a trend line, etc.) the authors identify regularities in the dynamics of each type of cryptocrime as well as key factors facilitating them. The goal of the authors is to conduct a systemic examination of crimes committed against and using cryptocurrency and to determine the prospects of developing different segments of cryptocrime. To achieve this goal, they analyze qualitative and quantitative characteristics of illegal trade in narcotics and pornography, legalization of criminal proceeds and theft of digital assets. They name the anonymity of cryptocurrency as a factor facilitating illegal trade in drugs, while the growing scope of the legalization of criminal proceeds and theft is facilitated by the fact that cryptocurrency and tokens do not have a legal status as objects of civil law and objects of encroachments on property. The analysis allows the authors to conclude that without effective criminological measures the level of such crimes will continue to grow and may double by the end of 2019. According to the authors, the priority directions of international criminal policy in the sphere of cryptocrime prevention include determining cryptocurrencies’ legal status, licensing cryptocurrency trade (stock exchange services, exchange platforms, companies issuing tokens), setting international standards of counteracting the legalization of criminal proceeds and the financing of terrorism, creating a cryptocrime database.
2 Московский университет МВД России им. В.Я. Кикотя, г. Москва, Российская Федерация 3 Научно-исследовательский институт Федеральной службы исполнения наказаний России, г. Москва, Российская Федерация Информация о статье Дата поступления 28 ноября 2017 г. Дата принятия в печать 25 мая 2018 г. Дата онлайн-размещения 18 июня 2018 г. Ключевые слова Цифровая криминология; математическое прогнозирование; математические методы; преступность; методы прогнозирования преступности; математическая модель преступности; параметры оценки преступности; профилактика преступленийАннотация. Статья посвящена рассмотрению проблем цифровой криминологии, анализу методов математического прогнозирования и возможности их использования в области изучения преступности. Усложнение задачи противодействия преступности обусловливает необходимость как критического осмысления существующих методов, так и изыскания возможностей выхода за рамки традиционных методов изучения правовых явлений. Информационно-аналитическая деятельность органов внутренних дел, основанная на разработке программ предупреждения преступности, имеет своей главной целью применение математических методов анализа преступности. Предметом изучения выступает совокупность математических методов, отобранных с учетом целесообразности их применения для криминологического прогнозирования. Авторы выделяют следующие методы: метод моделирования, корреляционный анализ, анализ ранговых корреляций и таблиц сопряженности, дискриминантный анализ, регрессионный анализ, дисперсионный анализ, ковариационный анализ, факторный анализ, анализ временных рядов, метод сезонных колебаний, метод максимального правдоподобия (в частности, его разновидность -метод наименьших квадратов), метод расчета среднегодовых темпов прироста, аппарат логических решающих функций, распознавание образов, вариационные исчисления, спектральный анализ, цепи Маркова, алгебра логики и др. Математическое прогнозирование в цифровой криминологии состоит в использовании имеющихся количественных и качественных параметров преступности, получении их математической зависимости от времени, пространства, других известных независимых переменных. В результате исследования установлено, что использование математической обработки криминологической информации позволяет увеличить точность прогнозных оценок.Abstract. The paper is devoted to the problems of digital criminology, the analysis of the methods of mathematical forecasting and the possibility of using them for crime research. The growing complexity of the task of crime counteraction determines the necessity for both the critical overhaul of the existing methods and the search for opportunities to go beyond the boundaries of the traditional methods of researching legal phenomena. The information and analytical work of law enforcement bodies based on the development of crime prevention programs has the key goal of the application of mathematical methods of crime analysis. The object of research is the complex of mathematical methods selected on the basis of their suitability for the purp...
Men with a burdened alcohol anamnesis, convicted for repeated crimes, commit unlawful acts in penal institutions under the influence of frustration. Aim of this study is to give an assessment to the burdened alcohol anamnesis as a factor associated with commission by convicted of crime repetition wrongful acts connected with a willful behavior misconduct while serving a sentence in penal institutions. Methods: we performed a sociological survey (the author's questionnaire was used) in a strict regime correctional colony (penal institution) in a group of 433 men - prisoners who have committed high intentional crimes in virulent crimes repetition. Results: We found every second convicted person (43.4 %) regularly consumed alcohol (3-4 times a week) before committing a repeated crime, every second convicted person (40.6 %) was drunk at the moment of committing a repeated crime; every eighth convicted person (15.2 %) had signs of harmful alcohol consumption / alcohol dependence according to the Alcohol use disorders identification test's (AUDIT) results. Every third convicted person (35.6 %) intentionally violated the order of serving punishment in penal institutions (attack on other prisoners, escort, etc.). Every additional point in the AUDIT was associated with an increased probability of order violation by a convicted person in 1.061 times (p < 0,001). Conclusions: Alcohol consumption is a factor associated with a repeated crime comission. Burdened alcohol anamnesis predisposes convicted for repeated crime to commit wrongful acts in penal institutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.