Nighttime medium‐scale traveling ionospheric disturbances (MSTIDs) observed in 630‐nm airglow images at middle latitudes are known to have a predominantly northwest‐southeast phase surface and to move southwestward in the Northern Hemisphere of Earth. However, the mechanisms of MSTID generation and their systematic southwestward motion have not been clarified. In this paper, we report the “northeastward” motion of the MSTIDs observed at Paratunka, Far East Russia (52.97°N, 158.25°E), using an all‐sky 630‐nm airglow imager at 2000–2300 LT on 19 August 2007. The MSTIDs moved first southwestward but then back northeastward in the northern part of the images. The northeastward motion of the MSTIDs took place coincident with a F layer height decrease observed by an ionosonde at Paratunka. The F layer height decrease was also confirmed by an enhancement of the 630‐nm airglow intensity, which seemed to propagate from northeast to southwest. This fact suggests that the F layer height decrease was caused by poleward wind enhancement rather than westward electric field. These observations imply that the F layer height decrease or the poleward thermospheric wind has some role in the northeastward turning of the MSTID propagation direction.
This study investigates the impact of dynamical processes in the neutral atmosphere on the high-midlatitude ionosphere during two sudden stratospheric warming (SSW) events. For this purpose, the reanalysis meteorological data of the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and UK Met Office (UKMO) were used in addition to that from the high-midlatitude chain of Russian ionosonde stations. The results show that the ionospheric response to the SSW events at high-midlatitudes depends on the position of the ionosonde stations relative to the stratospheric circulation pattern. Two well-pronounced effects were detected in this study. The first effect, observed in January 2009, was a negative effect in critical frequency (f o F2) and a positive effect in F2 layer maximum (h m F2) above the border of a stratospheric cyclone and an anticyclone with northward flow direction. During a 6-day period, the ionosphere exhibited a sharply inhomogeneous longitudinal structure when ionosondes, displaced at a longitude of approximately 20°, showed differences of approximately 1 MHz in f o F2 and more than 50 km in h m F2. The second feature, which was clearly observed in January 2013, implied a positive effect in f o F2 up to approximately 2.5 MHz and a negative effect in h m F2 at approximately 10 km above the center of the stratospheric cyclone. We conclude that these effects were caused by upward transport of molecular gas to the lower thermosphere for the first case and a pulldown forcing of molecular species above the low-pressure zone inside the cyclone for the second case. Changes in the O + /N 2 ratio in the lower thermosphere altered the O + recombination rate and the corresponding variations of ionosphere parameters.
The correlation of lidar returns at a wavelength of 532 nm at altitudes of 150 to 300 km is investigated with the parameters of the night ionospheric F2 layer. Moreover, the role of excited ions of the nitrogen atoms in the formation of lidar signals is discussed.
Findings
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.