The fabrication of ordered macroporous silicon is obtained by exploiting the self-assembly properties of polymer nanospheres. Here, we demonstrate the method by using nanospheres of 200 nm and 500 nm. These self-assemble in monolayers of ordered hexagonal close-packed nanospheres. A controlled reactive ion etch of the assembled nanospheres, subsequent evaporation of metal, followed by 'lift-off' of the polymer nanospheres, provides a mask suitable for a further reactive ion etch step to provide macroporous polysilicon. This methodology provides a novel approach for the fabrication of highly ordered macroporous polysilicon; porous silicon substrates with pores of this size (50-500 nm) were previously only fabricated using rather difficult processing methods. The method reported here is straightforward and achieved using fabrication methods that are compatible with those currently used for microelectromechanical systems (MEMS), photonic devices and nanostructured surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.