Experiments were performed to study electron acceleration by intense sub-picosecond laser pulses propagating in sub-mm long plasmas of near critical electron density (NCD). Low density foam layers of 300-500 μm thickness were used as targets. In foams, the NCD-plasma was produced by a mechanism of super-sonic ionization when a well-defined separate ns-pulse was sent onto the foamtarget forerunning the relativistic main pulse. The application of sub-mm thick low density foam layers provided a substantial increase of the electron acceleration path in a NCD-plasma compared to the case of freely expanding plasmas created in the interaction of the ns-laser pulse with solid foils. The performed experiments on the electron heating by a 100 J, 750 fs short laser pulse of 2-5×10 19 W cm −2 intensity demonstrated that the effective temperature of supra-thermal electrons increased from 1.5-2 MeV in the case of the relativistic laser interaction with a metallic foil at high laser contrast up to 13 MeV for the laser shots onto the pre-ionized foam. The observed tendency towards a strong increase of the mean electron energy and the number of ultra-relativistic laseraccelerated electrons is reinforced by the results of gamma-yield measurements that showed a 1000fold increase of the measured doses. The experiment was supported by 3D-PIC and FLUKA simulations, which considered the laser parameters and the geometry of the experimental set-up. Both, measurements and simulations showed a high directionality of the acceleration process, since the strongest increase in the electron energy, charge and corresponding gamma-yield was observed close to the direction of the laser pulse propagation. The charge of super-ponderomotive electrons with energy above 30 MeV reached a very high value of 78 nC.
The experience of target fabrication with low-density and cluster heterogeneity is presented. Cluster plasma research is strongly dependent on target fabrication development and target structure characterization. Ten more target parameters should be measured for experiment interpreting in case of micro-heterogeneous plasma. Foam and foil targets, high-Z doped also, are produced and irradiated on the existing laser facilities. The density of 4.5 mg/cc cellulose triacetate in the form of regular three-dimensional polymer networks are achieved which is as low as plasma critical density for the third harmonic of iodine laser light. The possibilities of varying important target parameters, methods of their monitoring are discussed. Experiments with underdense foam targets with or without clusters irradiated on Prague Asterix Laser System (PALS) laser facility are analyzed preliminary for target optimization. Under-critical foams of varying structure (closed-cell foam or three-dimensional networks) and densities are reported for plasma experiments. Thermal and radiation transport in such targets are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.