Cold stress causes unsaturation of the membrane lipids. This leads to adjustment of the membrane fluidity, which is necessary for cold acclimation of cells. Here we demonstrate that the cold-induced accumulation of PUFAs in the cyanobacterium Synechocystis is light-dependent. The desA(-)/desD(-) mutant, that lacks the genes for Δ12 and Δ6 desaturases, is still able to adjust the fluidity of its membranes in spite of its inability to synthesize PUFAs and modulate the fatty acid composition of the membrane lipids under cold stress. The expression of cold-induced genes, which are controlled by the cold sensor histidine kinase Hik33, depends on the fluidity of cell membranes and it is regulated by light, though it does not require the activity of the photosynthetic apparatus. The expression of cold-induced genes, which are not controlled by Hik33, does not depend on the membrane fluidity or light. Thus, membrane fluidity determines the temperature dependence of the expression of cold-induced genes that are under control of the Hik33, which might be the sensor of changes in the membrane fluidity. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
The desC gene for the acyl-lipid Delta9-desaturase from the thermophilic cyanobacterium Synechococcus vulcanus was introduced into Nicotiana tabacum under control of the 35S promoter. Expression of the desaturase was confirmed by Western blotting. Lipid analysis revealed that lipid content and the extent of fatty acid unsaturation significantly increased in leaves of transgenic plants. Chilling tolerance of those plants also increased, as estimated by the electrolyte leakage from the tissues damaged by cold treatments. Seeds of plants that expressed the desC gene imbibed at low temperatures demonstrated higher chilling tolerance than those of the control plants. The results demonstrate that the cyanobacterial thermophilic acyl-lipid desaturase was efficiently expressed in tobacco at ambient temperatures, and its expression resulted in the enhanced chilling tolerance of the transgenic plants.
The content and fatty acid (FA) composition of FA neutral acylglycerols (NAG), a mixture of 1,2,3‐triacyl‐sn‐glycerols (TAG) and 3‐acetyl‐1,2‐diacyl‐sn‐glycerols (acDAG), were determined in the seeds and arils of fruits of 14 Euonymus L. species. On the average, the seeds exceeded the arils in the absolute and relative dry matter content 2.9‐ and 1.9‐fold, respectively, and separate plant species greatly differed in NAG composition. The proportions of TAG in the NAG of seeds and arils were 4–5 and ~98 %, respectively. The degree of FA unsaturation in aril NAG was higher than in the seed NAG, and in acDAG—higher, than in TAG. In the NAG, 14 major FA molecular species (excluding minor FA) were found, and linoleic, oleic, palmitic, and linolenic acids were predominant. NAG of separate taxonomic units of the genus Euonymus L. differed from each other in the concentration of major FA as well as other FA. So, by using statistical analysis, it was definitely established that the species from the subgenus Euonymus were characterized by an increased content of linoleic acid, while those from the subgenus Kalonymus, by the predominance of oleic acid. Meanwhile, the species of the section Euonymus were marked by an enhanced concentration of a number of hexa‐ and octadecenoic FA positional isomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.