The publication presents the most common and promising models and schemes for replacing the power supply system of industrial enterprises, and an example of their use in practice for power supply to sewage treatment plants of a chemical enterprise. Various types of models are considered (in tabular form, in the form of an electrical replacement circuit or in the form of a finite-state machine), as well as a logical-probabilistic approach to the representation of the power supply system. The use of automation systems in power supply systems of industrial enterprises can reduce the total number of accidents, prevent their development, reduce the time of disconnections of electrical installations and downtime of mechanisms, and also allows to transfer to work without constant maintenance a significant number of electrical installations of substations, which, in turn, leads to a reduction in the number of service personnel, increase labor productivity and reduce maintenance costs. One of the main tasks on the way to automating the power supply system of enterprises is to present it in the form of a model. The list of replacement models and schemes that can be used to represent the power supply system of enterprises is quite large, and choosing the appropriate model, for that best meets the requirements of the final goal is quite a complex scientific task. The purpose of this article is to analyze the most common and promising models and schemes for replacing the power supply system and provide recommendations on their application in practice for power supply to sewage treatment plants of a chemical enterprise. Presenting the power supply system in the form of a table allows you to simplify and visually perform certification of electrical equipment, identify problem and weak points in the power supply system of industrial enterprises. Such a table proves that a large amount of electrical equipment at lower levels depends on a single electrical device at higher levels. The representation of the power supply system in the form of a three-phase symmetric replacement circuit can be used to calculate short-circuit currents in symmetric and unbalanced modes in the MatLab program and similar. Using the model of the power supply system in the form of a finite-state machine allows you to visually check the reliability of power supply to consumers, simplify the design of the power supply system of an industrial enterprise, select the state of switching devices in the power supply system and take into account the advantages and disadvantages of each state. It is advisable to use the methods discussed in this article to represent the power supply system (in tabular form, in the form of a finite-state machine or a three-phase symmetric replacement scheme) and their further application and use in automated power supply systems of industrial enterprises. The logical-probabilistic method allows us to consider the issue of power supply reliability based on the theory of logical algebra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.